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1

1
Introduction

The concept of utilizing big data to enable scientific discovery has generated 
tremendous excitement and investment from both private and public sectors over 
the past decade, and expectations continue to grow (FTC, 2016; NITRD/NCO, 
2016). Big data is considered herein as data sets whose heterogeneity, complexity, 
and size—typically measured in terabytes or petabytes—exceed the capability of 
traditional approaches to data processing, storage, and analysis. Using big data 
analytics to identify complex patterns hidden inside volumes of data that have 
never been combined could accelerate the rate of scientific discovery and lead 
to the development of beneficial technologies and products. For example, an 
analysis of big data combined from a patient’s electronic health records (EHRs), 
environmental exposure, activities, and genetic and proteomic information is 
expected to help guide the development of personalized medicine. However, 
producing actionable scientific knowledge from such large, complex data sets 
requires statistical models that produce reliable inferences (NRC, 2013). Without 
careful consideration of the suitability of both available data and the statistical 
models applied, analysis of big data may result in misleading correlations and false 
discoveries, which can potentially undermine confidence in scientific research if 
the results are not reproducible. Thus, while researchers have made significant 
progress in developing techniques to analyze big data, the ambitious goal of infer-
ence remains a critical challenge.
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WORKSHOP OVERVIEW

The Committee on Applied and Theoretical Statistics (CATS) of the National 
Academies of Sciences, Engineering, and Medicine convened a workshop on June 8-9, 
2016, to examine critical challenges and opportunities in performing scientific infer-
ence reliably when working with big data. With funding from the National Institutes 
of Health (NIH) Big Data to Knowledge (BD2K) program and the National Science 
Foundation (NSF) Division of Mathematical Sciences, CATS established a plan-
ning committee (see p. v) to develop the workshop agenda (see Appendix B). The 
workshop statement of task is shown in Box 1.1. More than 700 people registered to 
participate in the workshop either in person or online (see Appendix A). 

This publication is a factual summary of what occurred at the workshop. The 
planning committee’s role was limited to organizing and convening the workshop. 
The views contained in this proceedings are those of the individual workshop par-
ticipants and do not necessarily represent the views of the participants as a whole, 
the planning committee, or the National Academies of Sciences, Engineering, and 
Medicine. In addition to the summary provided here, materials related to the work-
shop can be found on the CATS webpage (http://www.nas.edu/statistics), including 
speaker presentations and archived webcasts of presentation and discussion sessions.

BOX 1.1 
Statement of Task

An ad hoc committee appointed by the National Academies of Sciences, Engineering, 
and Medicine will plan and organize a workshop to examine challenges in applying scientific 
inference to big data in biomedical applications. To this end, the workshop will explore four 
key issues of scientific inference:

•	 Inference about causal discoveries driven by large observational data, 
•	 Inference about discoveries from data on large networks, 
•	 Inference about discoveries based on integration of diverse data sets, and 
•	 Inference when regularization is used to simplify fitting of high-dimensional models. 

In addressing these four issues, the workshop will:

•	 Bring together statisticians, data scientists, and domain researchers from different 
biomedical disciplines, 

•	 Identify new methodologic developments that hold significant promise, and 
•	 Highlight potential research program areas for the future. 

One or more rapporteurs who are not members of the committee will be designated to 
prepare a workshop summary.
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3I n t r o d u c t i o n

WORKSHOP THEMES

While the workshop presentations spanned multiple disciplines and active 
domains of research, several themes emerged across the two days of presenta-
tions, including the following: (1) big data holds both great promise and perils, 
(2) inference requires evaluating uncertainty, (3) statisticians must engage early 
in experimental design and data collection activities, (4) open research ques-
tions can propel both the domain sciences and the field of statistics forward, and 
(5) opportunities exist to strengthen statistics education at all levels. Although 
some of these themes are not specific to analyses of big data, the challenges are 
exacerbated and opportunities greater in the context of large, heterogeneous data 
sets. These themes, described in greater detail below and expanded upon through-
out this proceedings, were identified for this publication by the rapporteur and 
were not selected by the workshop participants or planning committee. Outside of 
the identified themes, many other important questions were raised with varying 
levels of detail as described in the summary of individual speaker presentations. 

Big Data Holds Both Great Promise and Perils

Many presenters called attention to the tremendous amount of information 
available through large, complex data sets and described their potential to lead to 
new scientific discoveries that improve health care research and practice. Unfor-
tunately, such large data sets often contain messy data with confounding factors 
and, potentially, unidentified biases. These presenters suggested that all of these 
factors and others be considered during analysis. Many big data sources—such 
as EHRs—are not collected with a specific research objective in mind and instead 
represent what presenter Joseph Hogan referred to as “found data.” A number of 
questions arise when trying to use these data to answer specific research questions, 
such as whether the data are representative of a well-defined population of interest. 
These often unasked questions are fundamental to the reliability of any inferences 
made from these data. 

With a proliferation of measurement technologies and large data sets, often 
the number of variables (p) greatly exceeds the number of samples (n), which 
makes evaluation of the significance of discoveries both challenging and criti-
cally important, explained Michael Daniels. Much of the power of big data comes 
from combining multiple data sets containing different types of information from 
diverse individuals that were collected at different times using different equip-
ment or experimental procedures. Daniels explained that this can lead to a host 
of challenges related to small sample sizes, the presence of batch effects, and other 
sources of noise that may be unknown to the analyst. For such reasons, uncritical 
analysis of these data sets can lead to misleading correlations and publication of 
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irreproducible results. Thus, big data analytics offers tremendous opportunities 
but is simultaneously characterized by numerous potential pitfalls, said Daniels. 
With such abundant, messy, and complex data, “statistical principles could hardly 
be more important,” concluded Hogan.

Andrew Nobel cautioned that “big data isn’t necessarily the right data” for 
answering a specific question. He alluded to the fundamental importance of defin
ing the question of interest and assessing the suitability of the available data to 
support inferences about that question. Across the 2-day workshop, there was 
notable variety in the inferential tasks described; for example, Sebastien Haneuse 
described a comparative effectiveness study of two antidepressants to draw infer-
ences about differential effects on weight gain, whereas Daniela Witten described 
the use of inferential tools to aid in scientific discovery. Some presenters remarked 
that big data may invite analysts to overuse exploratory analyses to define research 
questions and underemphasize the fundamental issues of data suitability and bias. 
Understanding bias is particularly important with large, complex data sets such as 
EHRs, explained Daniels, as analysts may not have control over sample selection 
among other sources of bias. Alfred Hero explained that when working with large 
data sets that contain information on many diverse variables, quantifying bias and 
understanding the conditions necessary for replicability can be particularly chal-
lenging. Haneuse encouraged researchers using EHRs to compare available data to 
those data that would result from the ideal randomized trial as a strategy to define 
missing data and explore selection bias. More broadly, when analyses of big data 
are used for scientific discovery, to help form scientific conclusions, or to inform 
decision making, statistical reasoning and inferential formalism are required. 

Inference Requires Evaluating Uncertainty

Many workshop presenters described significant advances made in develop-
ing algorithms and methods for analyzing large, complex data sets. However, a 
recurring topic of discussion was that most work to date stops short of formally 
assessing the uncertainty associated with the predictions or comparisons made 
with big data (as mentioned in the presentations by Michael Daniels, Alfred Hero, 
Genevera Allen, Daniela Witten, Michael Kosorok, and Bin Yu). For example, data 
mining algorithms that generate network structures representing a snapshot of 
complex genetic processes are of limited value without some understanding of the 
reliability of the nodes and edges identified, which in this case correspond to spe-
cific genes and potential regulatory relationships, respectively. In an applied setting, 
Allen and Witten suggested using several estimation techniques on a single data 
set and similarly using a single estimation technique with random subsamples of 
the observations. In practice, results that hold up across estimation techniques and 
across subsamples of the data are more likely to be scientifically useful. While this 
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5I n t r o d u c t i o n

approach offers a starting place, researchers would prefer the ability to compute a 
confidence interval or false discovery rate for network features of interest. Assess-
ment and communication of uncertainty are particularly important and challeng-
ing for exploratory data analyses, which should be viewed as hypothesis-generating 
activities with high levels of uncertainty to be addressed through follow-up data 
collection and confirmatory analyses. 

Statisticians Must Engage Early in  
Experimental Design and Data Collection Activities 

Emery Brown, Xihong Lin, Cosma Shalizi, Alfred Hero, and Robert Kass noted 
that too often statisticians become involved in scientific research projects only 
after experiments have been designed and data collected. Inadequate involvement 
of statisticians in such “upstream” activities can negatively impact “downstream” 
inference, owing to suboptimal collection of information necessary for reliable in-
ference. Furthermore, these speakers indicated that it is increasingly important for 
statisticians to become involved early in and throughout the research process so as 
to consider the potential implications of data preprocessing steps on the inference 
task. In addition to engaging experimental collaborators early, Lin emphasized the 
importance of cooperating and building alliances with computer scientists to help 
develop methods and algorithms that are computationally tractable. Responding 
to a common mischaracterization of statisticians and their scientific collabora-
tors, several other speakers emphasized that statisticians are scientists too and 
encouraged more of their colleagues to become experimentalists and disciplinary 
experts pursuing research in a specific domain as opposed to focusing on statistical 
methods development in isolation from scientific research. Hero suggested that in 
order to be viewed as integral contributors to scientific advancements, statisticians 
could aim to be positive and constructive in interacting with collaborators.

Open Research Questions Can Propel Both the  
Domain Sciences and the Field of Statistics Forward 

Over the course of the workshop, a number of presenters identified various open 
research questions with potential to advance the fields of statistics and biomedical 
sciences, as well as the broader scientific research community. Several presenters 
illustrated the challenges and opportunities of integrating phenomenological data 
across multiple temporal or spatial scales. Examples included connecting subcellular 
descriptions of gene and protein expression with longitudinal EHRs and combining 
neuroscience technologies and methods spanning the individual neuron scale to 
whole brain regions. Alfred Hero said that the challenges associated with creating 
integrative statistical models informed by known biology are substantial because 
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of the inherent complexity of biological processes and because integrative models 
typically require tracking and relating multiple processes. Andrew Nobel and Xihong 
Lin discussed the importance of developing scalable and computationally efficient 
inference procedures designed for cloud environments, including increasingly wide-
spread cloud computing and data storage. Similarly, several speakers suggested 
that the use of artificial intelligence and automated statistical analysis packages 
will become prevalent and that significant opportunity exists to improve statistical 
practices for many disciplines by ensuring appropriate methods are implemented 
in such emerging tools. Finally, a few presenters encouraged research into methods 
that could better define the questions that a given data set could potentially answer 
based on the contained information. 

Opportunities Exist to Strengthen Statistics Education at All Levels

Emery Brown, Robert Kass, Bin Yu, Andrew Nobel, and Cosma Shalizi empha-
sized that there are opportunities to improve statistics education and that increased 
understanding of statistics broadly across scientific disciplines could help many 
researchers avoid known pitfalls that may be exacerbated when working with big 
data. One suggestion was to teach probability and statistical concepts and reason-
ing in middle and high school through a longitudinal and reinforcing curriculum, 
which could provide students with time to develop statistical intuition. Another 
suggestion was to organize undergraduate curricula around fundamental prin-
ciples rather than introducing students to a series of statistical tests to match with 
data. Many pitfalls faced in analysis of large, heterogeneous data sets result from 
inappropriate application of simplifying assumptions that are used in introductory 
statistics courses, suggested Shalizi. Thus, while teaching those classes, it would be 
helpful for educators to clearly articulate the limitations of these assumptions and 
work to avoid their misapplication in practice. Beyond core statistics-related teach-
ing and curricular improvements, placing greater emphasis on communications 
training for graduate students could help improve interdisciplinary collaboration 
between statisticians and domain scientists. Finally, several presenters agreed that 
the proliferation of complex data and increasing computational demands of sta-
tistical inference warrants at least cursory training in efficient computing, coding 
in languages beyond R,1 and the basics of database curation.

1   The website for the R project for statistical computing is https://www.r-project.org/, accessed 
January 4, 2017.
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ORGANIZATION OF THIS WORKSHOP PROCEEDINGS

Subsequent chapters of this publication summarize the workshop presenta-
tions and discussions largely in chronological order. Chapter 2 provides an over-
view of the workshop and its underlying goals, Chapter 3 focuses on inference 
about discoveries based on integration of diverse data sets, Chapter 4 discusses 
inference about causal discoveries from large observational data, and Chapter 5 
describes inference when regularization methods are used to simplify fitting of 
high-dimensional models. Each chapter corresponds to a key issue identified in the 
statement of task in Box 1.1, with the second issue of inference about discoveries 
from data on large networks being interwoven throughout the other chapters. 
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8

2
Framing the Workshop

The first session of the workshop provided an overview of its content and 
structure. Constantine Gatsonis (Brown University and chair of the Committee 
on Applied and Theoretical Statistics [CATS]) introduced the members of CATS, 
emphasized the interdisciplinary nature of the committee, and mentioned several 
recently completed and ongoing CATS activities related to big data, including 
Frontiers in Massive Data Analysis (NRC, 2013) and Training Students to Extract 
Value from Big Data: Summary of a Workshop (NRC, 2014). Alfred Hero (Univer-
sity of Michigan and co-chair of the workshop) said the overarching goals of the 
workshop were to characterize the barriers that prevent one from drawing reliable 
inferences from big data and to identify significant research opportunities that 
could propel multiple fields forward. 

PERSPECTIVES FROM STAKEHOLDERS

Michelle Dunn, National Institutes of Health 
Nandini Kannan, National Science Foundation

Chaitan Baru, National Science Foundation

Michelle Dunn and Nandini Kannan delivered a joint presentation describing 
the shared interests and ongoing work between the National Institutes of Health 
(NIH) and the National Science Foundation (NSF). Dunn said the two agencies 
share many interests, particularly across the themes of research, training, and col-
laboration. She described NIH’s long history of funding both basic and applied 
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research at the intersection of statistics and biomedical science, beginning with 
biostatistics and more recently focused on biomedical data science. She introduced 
the Big Data to Knowledge (BD2K) initiative as a trans-NIH program that aims 
to address limitations to using biomedical big data. Kannan described NSF’s sup-
port for foundational research across mathematics, statistics, computer science, 
and engineering. She noted the broad portfolio of big data research across many 
scientific fields, including geosciences, social and behavioral sciences, chemistry, 
biology, and materials science. Since NSF does not typically fund biomedical re-
search, coordination with NIH is important, Kannan said. 

Dunn mentioned several NIH programs to improve training and education 
for all levels, with a focus on graduate and postgraduate researchers—for example, 
the National Institute of General Medical Sciences Biostatistics Training Grant 
Program.1 The BD2K initiative funds biomedical data science training as well as 
open educational resources and short courses that improve understanding in the 
broader research community. Kannan described NSF’s focus on the training and 
education of the next generation of science, technology, engineering, and math-
ematics researchers and educators. She listed examples including postdoctoral and 
graduate research fellowships, which include mathematics and statistics focus areas, 
as well as research experiences for undergraduates that can bring new students into 
the field. Kannan also mentioned the Mathematical Sciences Institutes as an exist-
ing opportunity to bring together researchers across many areas of mathematical 
science, as well as other opportunities for week-long through year-long programs. 

Dunn described a third general area of shared interest for NIH and NSF as 
fostering collaboration between basic scientists typically funded by NSF and the 
biomedical research community funded by NIH. The NIH-NSF innovation lab 
provides a 1-week immersive experience each year that brings quantitative scien-
tists and biomedical researchers together to develop outside-the-box solutions to 
challenging problems such as precision medicine (2015) and mobile health (2016). 

Dunn and Kannan said they hoped this workshop would help identify open 
questions related to inference as well as opportunities to move biomedical and 
other domain sciences forward. Dunn requested that presenters articulate what 
biomedical data science research could look like in 10 years and describe why and 
how it might be an improvement from current practices. Kannan agreed, adding 
that NSF wants to identify foundational questions and challenges, especially those 
whose solutions may be applied in other domains as well. She also encouraged 
speakers to help identify a roadmap forward—not just the state of the art and cur-
rent challenges, but also what the future holds and what resources are required to 
get there. Kannan mentioned the National Strategic Computing Initiative (NSCI, 

1    The website for the Biostatistics Training Grant Program is https://www.nigms.nih.gov/Training/
InstPredoc/Pages/PredocDesc-Biostatistics.aspx, accessed January 4, 2017. 
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2016) and asked participants to think about what challenges could be addressed 
with sufficient computational resources. 

Chaitan Baru remarked on the rapid growth of data science related confer-
ences, workshops, and events nationally. Similarly, he described the increasing 
frequency of cross-disciplinary interactions among mathematicians, statisticians, 
and computer scientists. Both trends were valuable for the emerging discipline of 
data science, which is bringing together approaches from different disciplines in 
new and meaningful ways. 

Baru described the NSF Big Data Research Initiative that cuts across all direc-
torates. This initiative seeks proposals that break traditional disciplinary bound-
aries, he said. As NSF spans many scientific domains, a critical objective of the 
program is to develop generalizable principles or tools that are applicable across 
disciplines. Across research, education, and infrastructure development, NSF seeks 
to harness the big data revolution and to make it a top-level priority in the future. 

Baru described several high-level challenges that NSF and the emerging disci-
pline of data science are tackling. For example, NSF is seeking to create the infra
structure and institutions that will facilitate hosting and sharing large data sets with 
the research community, thereby reducing barriers to analysis and allowing easier 
replication of studies. Regarding education, Baru pointed to the proliferation of 
master’s-level programs but suggested that principles-based undergraduate cur-
ricula and doctoral programs are required for data science to become a true disci-
pline. In reference to the White House Computer Science for All program (Smith, 
2016), which introduces computing content in high school courses, Baru identified 
the similar need to introduce data science principles at this level of education.  

INTRODUCTION TO THE SCIENTIFIC CONTENT OF THE WORKSHOP

Michael Daniels, University of Texas, Austin

Michael Daniels presented an overview of, and the motivations for, the sci-
entific content of the workshop. He quoted the 2013 National Research Council 
report Frontiers in Massive Data Analysis, which stated, “The challenges for massive 
data go beyond the storage, indexing, and querying that have been the province 
of classical database systems . . . and, instead, hinge on the ambitious goal of 
inference. . . . Statistical rigor is necessary to justify the inferential leap from data 
to knowledge . . . .” (NRC, 2013). Daniels said it is important to use big data appro-
priately; given the risk of false discoveries and the concern regarding irreproducible 
research, it is critical to develop an understanding of the uncertainty associated 
with any inferences or predictions made from big data. 

Daniels introduced three major big data themes that would feature prominently 
across all workshop presentations: (1) bias remains a major obstacle, (2) quantifica-
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tion of uncertainty is essential, and (3) understanding the strength of evidence in 
terms of reproducibility is critical. He explained that the workshop was designed 
to explore scientific inference using big data in four specific contexts: 

1.	 Causal discoveries from large observational data: for example, evaluating 
the causal effect of a specific treatment in a certain population using elec-
tronic health records (EHRs) or determining the causal effect of weather 
on glacial melting using satellite monitoring data;

2.	 Discoveries from large networks: which are increasingly used in biological 
and social sciences, among other disciplines, to visualize and better under-
stand interactions in complex systems;

3.	 Discoveries based on integration of diverse data sets: for example, combin-
ing data from subcellular genomics studies, animal studies, a small clinical 
trial, and longitudinal studies into one inference question despite each data 
type having distinct errors, biases, and uncertainties; and

4.	 Inference when regularization is used to simplify fitting of high-dimensional 
models: specifically how to assess uncertainty and strength of evidence in 
models with far more parameters (p) than observations (n).

Regarding inference about causal discoveries, Daniels described the tremen-
dous amount of observational data available but noted that this information could 
be misleading without careful treatment. He emphasized the difference between 
confirmatory data analysis to answer a targeted question and exploratory analyses 
to generate hypotheses. He used the example of comparative effectiveness research 
based on EHRs to call attention to challenges related to missing data and selection 
bias, confounding bias, choice of covariates to adjust for these biases, and gen-
eralizability. Beyond these general challenges, comparative effectiveness research 
must evaluate the role of effect modifiers and gain an understanding of pathways 
through which different interventions are acting. Audience member Roderick Little 
commented that measurement error for big data can be a significant issue that is 
distinct from bias and warrants attention from statistical analysts.

In conducting inference about discoveries from large networks, the goal is to 
discover patterns or relationships between interacting components of complex sys-
tems, said Daniels. While graph estimation techniques are available, a critical chal-
lenge remains in quantifying the uncertainty associated with the estimated graph 
features and implied interactions, particularly given the high risk of false positives 
related to big data. Other open questions include development of statistical tests 
of significance and modification of techniques to analyze dynamic networks that 
have structural changes over time.

Making inferences based on the integration of diverse data sets poses many 
of the same challenges—for example, related to missing data and bias in available 
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data—as well as the additional hurdle of integrating data across many different 
temporal and spatial scales. As an illustrative example, Daniels encouraged par-
ticipants to think about the challenges and assumptions necessary to estimate the 
health impacts of air pollution by combining large-scale weather data from satellite 
images, regional weather stations, localized pollution monitors, and health records. 

Analyses of big data often require models with many more parameters (p) 
than there are observations (n), and a growing number of regularization tools 
have emerged (e.g., Lockhart et al., 2014; Mukherjee et al., 2015) based on the 
assumption of sparsity. Daniels explained that the general strategy with these 
regularization methods is to find the relationships with the greatest magnitude 
and assume that all others are negligible. While some regularization methods and 
associated penalties are more helpful than others, there is little formal treatment of 
uncertainty when these methods are used. This remains an open challenge, accord-
ing to Daniels. Additionally, many of the current approaches have been developed 
for relatively simple settings, and it is unclear how these can be modified for more 
complex systems, particularly when the assumption of sparsity may not be valid. 
Daniels concluded by stating that because existing statistical tools are in many cases 
inadequate for supporting inference from big data, this workshop was designed to 
demonstrate the state of the art today and point to critical research opportunities 
over the next 10 years. 
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3
Inference About Discoveries 

Based on Integration of 
Diverse Data Sets

The first session of the workshop focused on inference about discoveries from 
integration of diverse data sets. The session highlighted opportunities and challenges 
for reliably combining different data types, such as genomic and proteomic data, physi-
ological measurements, behavioral observations, and cognitive assessments, in the 
context of sound statistical modeling. Alfred Hero (University of Michigan) described 
the possibilities and risks of big data integration using a case study of genetic bio-
marker discovery for viral infection and presented a method for uncertainty estimation 
in graphical network models. Andrew Nobel (University of North Carolina, Chapel 
Hill) discussed the relationship between statistical and data management challenges 
when working with large, diverse data sets and presented an iterative testing procedure 
for community detection and differential correlation mining. Genevera Allen (Rice 
University and Baylor College of Medicine) discussed two large longitudinal medical 
cohort studies and described a flexible framework for modeling multivariate distribu-
tions with exponential families. Last, Jeffrey Morris (MD Anderson Cancer Center) 
discussed incorporating biological knowledge into statistical model development to 
reduce the parameter space and increase the biological coherence of results. 

DATA INTEGRATION WITH DIVERSE DATA SETS 

Alfred Hero III, University of Michigan

Alfred Hero began by describing the recent Federal Trade Commission report 
titled Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues, which 
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examined some of the potential benefits and pitfalls in drawing inferences from 
big data (FTC, 2016). While the case studies presented in that report demonstrate 
a clear commercial value for big data analysis, Hero issued the caveat that “bigger 
data does not necessarily lead to better inferences” for a number of reasons related 
to unknown biases, unquantified uncertainty, and uncontrolled variability across 
studies. In part this is because a lot of big data is collected opportunistically 
instead of through randomized experiments or probability samples designed spe-
cifically for the inference task at hand. Some analyses may have high computational 
demands and long run times, and Hero pointed to a need for tools that can identify 
the necessary conditions for replicability—for example, with regard to sample size 
relative to the number of variables—before running the analysis. 

Hero described the potential benefits of integrating diverse data sets, including 
the development of better predictors and better descriptive models. However, real-
izing these benefits is difficult because assessment of bias and replicability is chal-
lenging, especially in high-dimensional cases, and may require more sophisticated 
methods. Hero described three distinct categories of data integration:

1.	 Integration of data within a single study, in which the analyst has control 
over the experimental design and all data collection. In principle, bias 
can be measured, heterogeneity and variability in the data—for example, 
from batch effects or sample misregistration—can be controlled for, and 
uncertainty can be quantified. While there will always be some noise in the 
data due to biological diversity and temporal progression, these studies are 
the best-case scenario for analysts, albeit expensive and not always feasible. 
Examples of this type of integration can be found in Wang et al. (2009), 
Chen et al. (2012), and Hsiao et al. (2014).

2.	 Integration of primary data across several studies, in which the analyst has 
access to primary data but does not control all elements of experimental de-
sign. In this context, the bias and uncertainty in the data are at least partially 
unknown; for example, there may be one type of data collected by different 
laboratories with different protocols. This requires a different set of tools 
for analysts to account for these uncontrolled noise errors—for example, as 
presented by Deng et al. (2009), Morris et al. (2012), and Sripada et al. (2014).

3.	 Integration of metadata across several studies, in which the analyst does 
not have access to primary data but instead combines metrics such as 
mean aggregated effect sizes, computed p-values, or imputed relationships. 
Examples of this type of post-experimental integration can be found in 
Singh et al. (2008), Langfelder et al. (2013), and Rau et al. (2014).

Across all of these categories, Hero said there are statistical principles for data 
integration. Given two data sets X and Y, and assuming a model f(X,Y | θ) that gives 
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joint probability distribution for X and Y conditioned on the parameter of inter-
est θ, Fisher’s sufficiency principle yields that there is a minimal sufficient statistic 
T(X,Y) satisfying Fisher-Neyman Factorization following equation 1:

	 f(X,Y | θ) = gθ(T(X,Y))h(X,Y).	 eq. 1

Hero explained that this provides the best possible integration algorithm available 
and supports any type of inference task, but it requires a model. Furthermore, if 
the analyst has access to reliable prior information on the variable of interest, the 
Bayesian posterior distribution induces dimensionality reduction. While these 
principles provide an optimistic target, Hero reminded the audience that it is chal-
lenging to develop such a model and repeated the famous George Box mantra: “all 
[statistical] models are wrong, but some are useful” (Box, 1979).

There are also practical challenges for using big data, such as the tremendous 
increase in the amount of information stored on the cloud, said Hero. Looking 
forward over the next 10 years, Hero described the potential for similar increases 
in cloud computing and local sharing. As data sets become too large to store 
and manipulate on a personal computer, questions arise about how to do infer-
ence without ever having access to a complete data set (Wainwright and Jordan, 
2008; Meng et al., 2013). Similarly, Hero anticipates that privacy concerns—for 
example, with regard to electronic health records (EHRs)—will result in data 
sets with more messiness and missing data points as patients opt out of sharing 
information for research. Approaches for incorporating privacy as a constraint 
on statistical inference are still in their infancy, said Hero (see e.g., Duchi et al., 
2014; Song et al., 2015). 

Hero then presented several case studies, the first trying to predict the onset of 
illness before peak expression of symptoms by looking at various biomarkers over 
time and identifying the biomarkers that are most useful for predicting the onset 
of symptoms. Pre- and post-inoculation data describing ribonucleic acid (RNA) 
expression; protein expression; nasal, breath, and urine cytokines; and self-reported 
symptoms were collected 3 times daily for 121 subjects over 5 days, resulting in 
more than 18,000 samples assayed. The collected data have high dimensionality, 
exhibit large biological and technical variability, and have missing samples. These 
complexities are typical of big data. Hero presented an overview of select findings 
from the study, including a novel factor analysis method (Huang et al., 2011; Woods 
et al., 2013), identification and validation of a biological predictor of viral symptom 
onset (Zaas et al., 2013), demonstration that use of a personalized baseline refer-
ence sample improves predictor performance (Liu et al., 2016), and demonstration 
that whole blood messenger RNA (mRNA) is the best data type (a “modality”) for 
predicting illness. This study raised additional questions such as whether addi
tional baseline samples could further improve the accuracy of the predictor and 
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how generalizable findings are to the broader population. These questions are 
currently being explored in a follow-up study that includes more baseline samples 
and a collection of additional data modalities, said Hero.

These projects are very challenging in terms of both data management and 
statistical methods, and Hero briefly introduced several inference-driven data 
integration techniques developed in this project. The novel factor analysis method 
used to estimate a small number of explanatory variables as biological predictors 
for onset of symptoms is easily extendable to many data modalities. The novel 
aspect of this method, Hero explained, is that the positive sum-to-one constraint 
in the factor model avoids known problems of masking and interference faced by 
principal component analysis. The novel factor analysis method was more effective 
for predicting onset of symptoms than other methods in the literature and was 
validated with additional data sets (Huang et al., 2011; Bazot et al., 2013). 

Hero next described the use of gene set enrichment analysis, which integrates 
variables in the large data sets into known molecular pathways of action (Irizarry 
et al., 2009) and reduces the dimensionality of the data. Calculating p-values on 
the differential expression of specific molecular pathways over time allows identi-
fication of statistically significant differences. Hero showed a network constructed 
from correlating these p-value trajectories that groups pathways that have a similar 
temporal progression of differential expression (Huang et al., 2011), as shown in 
Figure 3.1. 

FIGURE 3.1  Spectral clustering of p-value trajectories classifies pathways having similar patterns 
of differential expression. SOURCE: Reproduced with permission from Huang (2011). 
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In the final section of his talk, Hero focused on network inference and how to 
evaluate the significance and replicability of network edges by controlling for false 
discoveries. This is challenging in the high-dimensional context of big data when 
fitting models with many more parameters (p) than samples (n), often denoted 
as p>>n, as the classical central limit theorem applies only for fixed p as n goes to 
infinity. Similarly, Hero described analogous approximations used in the mixed 
high-dimensional setting that allow both p and n to go to infinity (Bühlmann and 
van de Geer, 2011), which are not useful for small samples. Hero derived a “purely 
high-dimensional regime,” allowing p to go to infinity with a fixed n (Hero and 
Rajaratnam, 2011, 2012, 2016), that he used to calculate a critical phase transi-
tion threshold (ρc) for sample correlation values (equation 2), below which false 
discoveries dominate: 

	 ρc = 1− cn p−1( )−2/ n−4( ) . 	 eq. 2

The phase transition threshold for detection of correlations increases logarithmi-
cally with p; thus, for a fixed threshold value one can accommodate exponentially 
larger p with small increases in sample size (n) in what Hero called “the blessing of 
high dimensionality.” He noted, however, that other inference tasks—for example, 
full uncertainty quantification—are more demanding in terms of sample size. Hero 
concluded by emphasizing the importance of rightsizing the inference task to avail-
able data by first detecting those network nodes with edges and prioritizing them 
for further data collection and estimation (Firouzi et al., 2017). 

DATA INTEGRATION AND ITERATIVE TESTING

Andrew Nobel, University of North Carolina,Chapel Hill

Andrew Nobel began by remarking that the trade-off between computational 
error and statistical error is more important than ever because of the growing size 
of data sets. He cautioned that having a lot of data does not necessarily mean one 
has the right data to answer the analysis question of interest. Often, the obvious 
statistical techniques, or those deemed appropriate by a disciplinary scientist, are 
not the ones actually required. For these reasons, in practice most data analysis 
problems require sustained interaction between statisticians and disciplinary scien-
tists; the process works best if scientists understand some elements of the statistical 
analysis, and likewise statisticians understand some of the underlying science. 

Nobel then presented a taxonomy of data integration, contrasting classical 
approaches with the challenges of big data. Classical data integration focuses on 
integrating data from multiple experiments or multiple groups of samples on a 
common measurement platform, said Nobel. While this is still relevant today, inte-
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gration techniques increasingly bring together many data types into a common, or 
at least overlapping, sample group. Nobel presented an example of a data set from 
The Cancer Genome Atlas (TCGA) consortium, which contains gene expression 
data (approximately18,000 genes), micro RNA data (650 miRNAs), copy number 
data (200,000 probes), methylation data (22,000 regions), and gene mutation data 
(12,000 genes), as well as patient survival or treatment response descriptors for 350 
breast cancer tumors. In such large data sets, frequently data are missing and the 
analyst does not have coverage across all data modalities for all subjects. For example, 
Nobel described data from the Genotype-Tissue Expression (GTEx) consortium in 
which genotype single nucleotide polymorphism (SNP) information is available at 
5 million genomic locations for each individual, but gene expression data are avail-
able only for a subset of tissues that varies from individual to individual. 

The potential benefits of integrating data across many measurement platforms 
are enhanced statistical power and improved prediction, said Nobel, and these can 
be used to provide new or better insights into complex biological phenomena. 
However, this comes at the expense of greater challenges in managing, curating, and 
analyzing data. Before even getting to formal statistical analysis, Nobel explained, 
many preprocessing decisions are made—for example, normalization, imputation, 
and removal of appropriate covariates—that must be scrutinized closely. Even 
seemingly small decisions may have significant impacts on later analyses, and it can 
take months to fully understand what processing has been or should be performed 
on the data. This is another reason for stronger and more frequent collaboration 
between statisticians and disciplinary scientists, Nobel urged. Moving to model 
selection, he said that integration of diverse data sets often requires modeling 
assumptions to reduce the dimensionality of the parameter space—such as sparsity 
assumptions. While it is critically important to check the validity of these assump-
tions, this is often more difficult than simply checking for normality. Furthermore, 
many statistical models have free parameters that must be specified by the analyst, 
and these decisions also have a significant impact on the final analysis. 

Shifting topics, Nobel remarked that networks have become extremely popular 
in part because they are intuitive visual representations of systems characterized by 
pairwise relationships and can be amenable to statistical analysis. Unfortunately, 
networks do not capture higher-order interactions between groups of variables, 
said Nobel, and summary edge weights (e.g., derived from correlations) may not 
adequately capture heterogeneity among samples. 

He described an iterative testing method for community detection in large 
networks, in which a community is a group of nodes that are significantly inter-
connected but have relatively few connections to nodes outside the community 
(Figure 3.2). Given a group of nodes that represent a candidate community (Bt), the 
iterative testing algorithm calculates a p-value for each node in the network relative 
to the configuration null model, which represents how significantly each node is 
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FIGURE 3.2  Community detection in networks identifies sets of nodes that are highly interconnected 
but have relatively few connections with nodes outside the set. SOURCE: Reproduced with permission 
from Wilson et al. (2014). 

connected to the community Bt. The nodes are ordered from most to least signifi-
cantly connected to Bt and those nodes with a p-value above a specified threshold 
are omitted, following the Benjamini-Hochberg step-up procedure (Benjamini and 
Hochberg, 1995). This process is repeated with this new community (Bt+1) and re-
peats until Bt+1 = Bt. This procedure is competitive with other community detection 
methods in the literature, is relatively insensitive to the selection of the rejection 
threshold, and does not require partitioning of the network, said Nobel. Running 
this process with initial node sets derived from vertex neighborhoods can identify 
meaningful communities in a network. Importantly, nodes not assigned to any 
community can be assigned to background. 

Nobel described a similar procedure to identify variable sets that are dif-
ferentially correlated in two sample groups, illustrating the method using cancer 
subtypes from the TCGA data set. Identifying differentially correlated variables 
is a useful form of exploratory analysis to generate hypotheses worthy of further 
study, said Nobel. As a second example, he presented results from differential cor-
relation mining of a functional magnetic resonance imaging (fMRI) data set from 
the Human Connectome Project. Figures from the analysis show that brain voxels 
exhibiting differential correlation between language and motor tasks exhibit a 
distinct spatial pattern that corresponds to known regions of neural activity and 
that differs from a standard analysis of differential activity. This calls attention to 
the potential advantages of studying higher-order differences to gain additional 
biological insights. 

PANEL DISCUSSION

A panel discussion followed the presentations from Hero and Nobel. An audience 
member asked Hero if the gene pathways identified in the viral infection biomarker 
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discovery study comport with known biological mechanisms as well as how or if find-
ings were replicated in any of the presented studies. Hero responded that many of the 
gene signatures identified—toll-like receptor pathways, inflammation pathways, and 
interferon inducible transcription factors—are well known in the literature. But there 
are also some factors in this signature that are unknown and seem unrelated to the 
infection, and the current hypothesis is that these genes and proteins are associated 
with susceptibility factors that are not currently characterized. Further study may 
provide some mechanistic understanding of their presence, said Hero. Regarding 
replication, there have been a number of cross-validation efforts within and across 
multiple studies, as well as in clinical trials. Interestingly, the biomarker is equally 
effective for predicting onset of other viral infections, and follow-up research may 
identify a similar marker for bacterial illness or develop a composite biomarker that 
can help distinguish the two different causes. Nobel added that interpretation of gene 
pathways is challenging but often the best available explanation, and Hero agreed, 
saying that a critical limitation is that gene pathway data present a snapshot rather 
than account for temporal changes in expression.

Another audience member noted that relying on prediction for model valida-
tion provides only an aggregate indicator of model suitability and asked Hero if 
model residuals were used as an alternative approach to validation. Hero agreed 
that looking at model fit is feasible, but there is limited value with so few subjects 
and so many parameters; he would be concerned with overfitting of residuals. He 
suggested that there is a need to develop methods for residual analysis with few 
samples and many parameters.

An online participant asked if model development, analysis, and results might 
be impacted by the fact that much of the data was collected years ago and there 
are likely differences and improvements in data curation and storage practices over 
time. Nobel answered first, saying that in his experience there is no such thing as 
a final data set; rather, the data used in analyses are always evolving. Furthermore, 
reevaluating any decision about a data preprocessing step can substantially change 
the downstream analysis. Data preprocessing was discussed extensively in the initial 
stages of the GTEx project: “As a theoretician . . . I never would have imagined how 
complex [data curation and sharing] is . . . and I don’t know if anyone has the right 
system,” Nobel said. Hero agreed, adding that improvements have been driven to 
some extent by top journals and funding agencies that require data sharing. None-
theless, there is still a long way to go before all data produced from publicly funded 
research will be available to the public. He noted that large data sets produced by 
private companies are almost never made public. Hero emphasized that software 
should be shared more frequently, and Nobel commented that pseudocode is not 
a substitute. 

A member of the audience called attention to the importance of data pre
processing as a crucial part of statistical analysis that should not be viewed as a 
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separate, upstream process. The participant shared some concern regarding the use 
of p-values in network community detection, because p-values do not measure the 
size of an effect, particularly with heterogeneous data sets. Nobel agreed, saying that 
in this specific case the methodological use of p-values was principled, and p-values 
were not assigned to communities per se (Wilson et al., 2014). The participant said 
that, in principle, Bayesian approaches can handle many of the challenges raised 
in this session—for example, missing data or identification problems—but the 
practice of developing algorithms and computing results is not a trivial matter. 
The participant described regularization and parameter reduction as a challenge in 
finding appropriate priors and called for more research into developing Bayesian 
models for large, complex data structures for which a flat prior is insufficient. 
Hero agreed, but he remains open-minded and will use whatever method works, 
whether Bayesian or not.

STATISTICAL DATA INTEGRATION FOR LARGE-
SCALE MULTIMODAL MEDICAL STUDIES 

Genevera Allen, Rice University and Baylor College of Medicine

Genevera Allen provided an overview of data integration for large-scale multi
modal medical studies. Large-scale medical cohort studies typically have many 
types of data—including clinical evaluations; EHRs; images; gene and protein 
expression; and social, behavioral, and environmental information—and the objec-
tive of data integration in this context is to combine all of these to better understand 
complex diseases. Allen defined multimodal data as coming from multiple sources 
or measurement technologies applied to a common set of subjects. If these data take 
different forms, including discrete, continuous, and binary, they are called mixed 
multimodal data and require additional processing to integrate. She suggested 
that multimodal data integration be thought of as the opposite of classical meta-
analysis, in which analysts aggregate across many sets of subjects (n) to conduct 
inference on variables. Conversely, the focus of data integration is to aggregate 
multiple sets of variables to conduct inference on the subjects. 

Allen described some of the data collected through TCGA, which contains 
information from more than 11,000 patients and totals nearly 2.5 petabytes of data. 
Genetic data collected include mutation information, copy number variations, gene 
and miRNA expression, and methylation data. Individually, each modality provides 
information on only one component of a complex process, and many of the biolog-
ical malfunctions in cancer development happen between these types of data. Thus, 
developing a comprehensive understanding of cancer biology requires integration 
of these diverse data, said Allen. However, integration of these data is particularly 
challenging both because they are large and because of the mixed data types with 
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different scales and domains. Allen described some of the objectives for integra-
tion of TCGA data: (1) to discover the sets of mutations, gene expression changes, 
and epigenetic changes that are most associated with, and potentially causative of, 
tumor cell growth; (2) to identify different cancer subtypes and patient groups 
that have tumors with similar characteristics; and (3) to discover new, potentially 
personalized, therapies for treating cancer. 

In a second case study, Allen introduced the Religious Orders Study (ROS) and 
the Rush Memory and Aging Project (MAP), which are longitudinal cohort studies 
tracking dementia and Alzheimer’s disease in nearly 3,000 patients. Alzheimer’s is 
a large and growing public health burden, said Allen, and is the only “top-10” cause 
of death in the United States with no prevention or cure. One key facet of these 
studies is that patients’ brains were donated at death, allowing for full pathologi-
cal analysis, in addition to containing baseline data describing patients’ genetics, 
lifestyle, environment, and behavior, as well as clinical evaluation, results from 
19 distinct cognitive tests, and neuroimaging data collected through the dura
tion of the study. At the time of death, more than 60 percent of patients’ brains 
had symptoms of Alzheimer’s disease but less than half of these patients had 
been diagnosed with the disease, pointing to a large discrepancy between clinical 
interpretation of cognition and the pathology. Key goals of data integration in 
these studies include developing a biological understanding of this discrepancy 
and identifying additional risk factors to guide development of new treatments. 
Alzheimer’s disease is complex, and individual data modalities have been studied 
extensively, said Allen, making integration an important strategy for advancing 
understanding of the disease. 

After providing background on these two case studies, Allen described some 
of the practical data-related challenges faced regardless of the statistical methods 
applied. One critical challenge is identifying and correcting for batch effects, which 
arise from differences in data collection procedures across different laboratories 
or technologies and are problematic because they can be confounded across data 
modalities or across time. Allen showed the results of principal component analysis 
for methylation data and RNA sequencing data from the ROS and MAP studies, 
which showed clear grouping and batch effects, in one case due to instrument 
maintenance. Similarly, structural neuroimaging data collected in the ROS and 
MAP studies before 2012 relied on a 1.5 tesla magnet that was replaced with a 
3 tesla magnet to provide greater resolution; how to reconcile these two batches 
of imaging data remains an open question, said Allen. Another critical challenge 
is that not all data modalities are measured for every subject, which creates miss-
ing or misaligned data and can result in a very limited sample size if the analysis 
is restricted only to patients for whom complete data are available (Figure 3.3A). 
This is problematic because these studies begin with small sample sizes relative to 
the number of variables. Allen showed several Venn diagrams illustrating the small 
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FIGURE 3.3  (A) Generic visualization of how making inferences from the integration of multiple 
data modalities (X(1) through X(K)) can be challenging due to potentially small numbers of patients 
for whom complete data are available, and (B) illustration with data available from the ROS and MAP 
studies. SOURCE: Genevera Allen, Rice University and Baylor College of Medicine, “Statistical data 
integration for large-scale multimodal medical studies,” presentation to the workshop, June 8, 2016. 

fraction of patients who have multiple data types available: only 68 out of nearly 
3,000 patients have genetic information, pre-mortem magnetic resonance imaging 
(MRI), and postmortem MRI available in the ROS and MAP studies (Figure 3.3B).

Moving to methodological challenges faced in analysis of mixed multimodal 
data sets, Allen said that prediction is a relatively easy task. Although understudied, 
there are a number of methods that can be applied: (1) black box methods (e.g., 
random forests), (2) ensemble learning in which a model is fit to each data modality 
and then combined, and (3) feature learning approaches (e.g., principal component 
analysis) on each data modality followed by supervised models using the identified 
features. More challenging are data-driven discoveries that provide new biological 
knowledge; for instance, the ROS and MAP studies not only aim to predict if a 
patient will get Alzheimer’s, but also seek to know why, said Allen. 

She then discussed a novel method for integrating mixed multimodal data 
using network models and exponential families to model a joint multivariate 
distribution. While the broader literature describes network methods for some 
types of data—for example, the Gaussian network model for continuous valued 
data and the Ising model for binary valued data—others are less well researched 
(e.g., count-valued data, bounded random variables), and bringing all of these data 
types into a common network model is a significant challenge. Allen introduced a 
framework for graphical models via exponential families, which assumes that all 
conditional distributions can be described as a distribution from the exponential 
family (containing many of the most common distributions including the normal, 
Gaussian, Bernoulli, and Poisson) and takes the general form of the following:

	 P(X) = exp (θB(X) + C(X) – D(θ)),	 eq. 3
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where θ is the canonical parameter, B(X) is the sufficient statistic, C(X) is the base 
measure, and D(θ) is the log-partition function. Based on this assumption, it fol-
lows that the joint multivariate distribution takes the form of the following:

	 P(X) = exp{ΣsθsB(Xs) + ΣsΣtθstB(Xs)B(Xt) + 	
	 ΣsΣt2...tk

θs...tk
B(Xs)Πk

j=2B(Xtj) + ΣsC(Xs) – A(θ)},	 eq. 4

in which the pairwise dependencies between variables s and t are given by the 
product of their sufficient statistics. This flexible framework accommodates diverse 
data types, permits a wide range of dependence structures, and allows model fitting 
with penalized generalized linear models, said Allen. To the best of her knowledge, 
this is the first multivariate distribution that parameterizes dependencies of mixed 
data types. According to Allen, one of the main challenges in fitting these models 
is that each type of data is on a different scale, which requires different levels of 
regularization, and preliminary work shows that standardization of the different 
data types is inappropriate and potentially misleading. Furthermore, because of 
correlation within and between data modalities, there may be confounding inter-
ference that obscures weaker signals. 

While Allen focused on methods for mixed multimodal data, she called atten
tion to existing work on data integration and dimension reduction for single 
data types such as joint and individual variation explained (Lock et al., 2013) 
and integrative clustering (Shen et al., 2009). Developing statistical methods for 
dimension reduction and clustering within mixed multimodal data sets remains 
an open problem, said Allen. Referring back to the ROS and MAP studies, she 
said longitudinal studies with mixed multimodal data also present open statisti-
cal problems related to aligning data collected at different times. In the bigger 
picture, the ROS and MAP studies are two of many ongoing projects looking at 
aging and cognitive health, which creates the opportunity for meta-analysis across 
similar integrative studies to increase statistical power, which is an objective of the 
Accelerating Medicines Partnership–Alzheimer’s Disease project. 

More fundamental challenges relevant for all medical studies using big data 
are related to data access, data quality, and patient privacy while sharing data. For 
example, much of the data collected in the ROS and MAP studies is not yet pub-
licly available, so just getting data to analysts is a major challenge that cannot be 
overlooked, said Allen. Ensuring reproducibility of research is a critical challenge 
that is exacerbated in the context of multimodal data because each measurement 
technique typically has a distinct data preprocessing pipeline, and there may not be 
one person who understands all of these for large studies such as ROS and MAP. 
These studies typically are conducted by large teams that use different instruments 
and different software that introduce error, Allen said, so researchers need to make 
sure that downstream inferences are reproducible at the end of the analysis. 
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DISCUSSION OF STATISTICAL INTEGRATION 
FOR MEDICAL AND HEALTH STUDIES 

Jeffrey S. Morris, MD Anderson Cancer Center

Jeffrey Morris remarked that the last 10 years have produced a large amount of 
complex, information-rich data that has transformed biomedical research. For exam-
ple, research in molecular biology produces genome-wide data through a variety of 
platforms that provides information on deoxyribonucleic acid (DNA), RNA, protein 
expression, and epigenetics data on mediating processes such as methylation. Simi-
larly, imaging technologies continue to evolve and currently provide both structural 
and functional information, said Morris. Given the abundance of data, the critical 
question is how biological knowledge can be extracted from these large, complex, 
and heterogeneous data sets. Integrative modeling is one of the key scientific chal-
lenges and will be critical for translating information to knowledge, said Morris, who 
showed an example of five different types of neuroimaging that each contains differ-
ent types of information. This is particularly challenging when data and measure-
ment platforms describe biological phenomena across several orders of magnitude 
in spatial and temporal scales, ranging from single neurons to whole brain regions. 

Integrative modeling faces numerous challenges—for example, the small sam-
ple size for complete data sets—said Morris, referencing the small overlapping 
area in a Venn diagram in Figure 3.3B. This requires implementing creative ways 
to best use the information that is available or developing strategies for multiple 
imputation of missing data. Similarly, batch effects are a serious problem if they are 
confounded with important factors and are even more challenging with complex, 
high-dimensional data sets. Morris also mentioned the importance of understand-
ing data preprocessing—echoing the call for analysts to consider preprocessing as 
part of their statistical inference—as well as the practical challenges of storing, 
indexing, linking, and sharing large data sets. Morris then introduced the issue of 
defining a common unit of analysis, as different data observe different objects and 
phenomena. For example, methylation occurs at individual sites on a gene, which 
can contain more than 20,000 potential binding sites, so it is not trivial to align 
observations and elements across different platforms. 

Morris summarized three main classes of statistical tasks described in the 
preceding presentation by Genevera Allen: 

1.	 Building of predictive models that integrate diverse data and allow a larger 
set of possible predictors to search over, which is difficult with mixed multi
modal data sets; 

2.	 Structure learning to empirically estimate interrelationships and exploit 
correlations to reduce the number of parameters, which can be difficult 
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because although structure can usually be found, not all structures are 
replicable and meaningful; and 

3.	 Network structure learning and use of graphical models to estimate pair-
wise associations in the data.

These strategies focus on concatenating across variables to facilitate discovery of 
underlying biological phenomena, said Morris. However, there are other integra-
tive modeling strategies to narrow the parameter space, specifically incorporating 
known or theoretical knowledge into model development. For example, genetic 
information is transcribed to proteins through mRNA, which in turn is modified 
through miRNA and epigenetics that also have a genetic component. Expression 
of different proteins results in different phenotypes or molecular subtypes and 
ultimately causes different clinical outcomes, so it would make sense to build 
a model that has this type of directed flow between data modalities. Similarly, 
incorporating biological knowledge from the broader literature, such as molecular 
pathway information, can inform model development. Additionally, focusing on 
biologically relevant information—for example, excluding methylation sites that 
are known not to affect gene expression—can simplify complex data sets. 

For the remainder of his presentation, Morris described a case study evaluat-
ing subtypes of colorectal cancer that demonstrates incorporation of biological 
knowledge into integrative modeling. As motivation, he presented a continuum of 
precision medicine ranging from traditional practices in which all patients are given 
the same treatment regardless of personal variability to personalized care in which 
each patient is given a specifically designed treatment. A reasonable middle ground 
to aim for is identifying and treating cancer subtypes that share many biological 
characteristics, said Morris. To develop consensus regarding molecular subtypes 
of colorectal cancer, Morris and colleagues participated in an international con-
sortium led by SAGE Biosystems that combined information from 18 different 
studies with mRNA data from approximately 4,000 patients. Their analysis yielded 
four distinct communities, representing different colorectal cancer subtypes, each 
characterized by different biological characteristics. The subtypes identified are 
consistently identified and replicable, in part because the data set is large and 
diverse, said Morris, and he believes it represents true biological differences. Unfor-
tunately, mRNA data are not clinically actionable and require an understanding of 
the upstream effectors. TCGA data on colorectal cancer and MD Anderson internal 
data are now being combined with the goal of characterizing the biology of each 
colorectal cancer subtype to explore questions such as the following: Which subtype 
has the worst prognosis and is a priority for aggressive treatment? Do different 
subtypes respond differentially to a specific treatment? Are there subtype-specific 
targets that can be used to guide development of new treatments? Morris suggested 
that integrative modeling is critical to answering these questions.
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Providing one example, Morris showed boxplots of miRNA expression indicat-
ing that the particular miRNA was expressed less in one subtype than in the other 
subtypes. As miRNA affects expression of numerous other genes, gene set enrich-
ment was used to show that downstream genes that would normally be inhibited 
by the miRNA were overexpressed in this subtype, and similarly the DNA coding 
for the miRNA itself is more methylated in this subtype. Putting this information 
together indicates that methylation inactivates this miRNA, which in turn results 
in greater downstream expression of genes that are a known hallmark of metastatic 
cancer (Figure 3.4). Morris described a strategy for relating methylation and mRNA 
data, which is challenging because methylation is measured at thousands of sites 
per gene, that involves restricting the analysis to sites for which methylation is cor-
related with mRNA expression and constructing a gene-level methylation score. 
In turn, this allowed estimation of the percent of gene expression that is explained 
by methylation to obtain a list of genes whose expression is strongly modulated by 
methylation. 

In one final example of bringing biological knowledge into statistical model 
development, Morris presented a Bayesian hierarchical integration framework 
called iBAG that models biological interrelationships from genetics through clinical 
outcomes. Beginning with a nonparametric model to regress gene expression based 
on upstream effectors such as methylation and copy number, these estimates are 
carried forward as predictors in the clinical regression model. This results in a list 
of prognostic genes and the upstream effectors that are responsible for its expres-
sion, said Morris. The framework has been extended to account for gene pathways 
as well as to incorporate clinical imaging data, which allows researchers to identify 
predictive features on an image, understand the gene pathways associated with that 
feature, and relate these pathways to the upstream genetic and epigenetic processes 

A B C 

FIGURE 3.4  Combining data from (A) micro RNA expression, (B) gene set enrichment, and (C) gene-
level methylation with known biological information allowed researchers to infer that methylation drives 
differential gene expression in one colorectal cancer subtype. S-1 through S-4 correspond to the differ-
ent cancer subtypes. SOURCE: Jeffrey Morris, MD Anderson Cancer Center, “Statistical integration for 
medical/health studies,” presentation to the workshop, June 8, 2016.
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that dictate gene expression. Integrating multimodal data and known biology 
reduces the number of potentially relevant parameters, which makes modeling 
more efficient, and incorporating known biological information yields biologically 
coherent results that are more likely to be reproducible, said Morris. However, he 
cautioned that not everything in the literature is true, so incorporating biological 
knowledge may introduce additional bias. Furthermore, it requires detailed under-
standing of the underlying biology, and Morris concluded with an appeal for close 
collaboration between disciplinary scientists and statistical analysts. 

PANEL DISCUSSION

Genevera Allen and Jeffrey Morris participated in a panel discussion following 
their individual presentations. A participant remarked on the growing popularity 
of graphical models, such as the Ising and Gaussian used by Allen, but asked why 
Bayesian networks were not mentioned despite their ability to integrate mixed 
multimodal data and additional advantageous properties. Morris answered first, 
saying that graphical models can be fit using either a Bayesian or frequentist ap-
proach. He agreed that Bayesian networks have many advantages but pointed out 
that they may be more computationally demanding. Allen responded that a lot of 
good work has been done using Bayesian networks to integrate mixed multimodal 
data, and the framework she presented using exponential families to represent a 
multivariate distribution could be applied with Bayesian networks and priors. 
Many Bayesian approaches model dependencies between mixed data types in the 
latent hierarchical structure of the model; this avoids challenges related to scaling 
of data across modalities but is often more difficult to interpret. There are benefits 
and drawbacks to both approaches, and data should be analyzed with many dif-
ferent methods, concluded Allen. 

Another participant commented that as a biologist he viewed changing tech-
nology as a positive trend, making reference to the replacement of 1.5 tesla magnets 
in MRI machines with a 3 tesla magnet mentioned by Allen, and asked for com-
ments or strategies to avoid older data becoming obsolete while taking advantage 
of the improved data produced by newer instruments. Allen responded that one 
strategy is to identify appropriate metrics—for example, gene-level summaries of 
methylation—that allow researchers to link data sets across technology changes. 
The strategy depends a lot on the context, Morris explained, but MD Anderson 
analyzes some common samples with both the newer and older technology and 
uses these overlapping data sets to create a mapping function to relate the older 
and newer data sets. 

A participant asked how to interpret the dependencies between mixed data 
specified as multivariate distributions from exponential families and if using likeli-
hood-based methods for inference would lead to model misspecification given the 
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limited sample size. Addressing the first question, Allen responded that dependen-
cies between mixed data are parameterized as the product of sufficient statistics 
from each underlying distribution and that interpretation of this is an open area 
for future research. Regarding the second question, Allen agreed that there is an 
insufficient sample size relative to the number of parameters to rely on likelihood-
based inference even in large medical cohort studies with thousands of subjects. In 
the cases that Allen has applied this approach, she relied on biological knowledge 
to filter the data, as discussed by Morris, before fitting the network. Furthermore, 
it is critical to understand the reproducibility of network features, said Allen, who 
described how she uses bootstrapping to assess the stability of network edges and 
provides collaborators with a rank ordering of the most important edges. Although 
this is practicable, Allen acknowledged that there are likely better ways to assess 
reproducibility that should be the subject of further research. 

In the last question, a participant noted that many different models exist and 
asked how the speakers compared and assessed the suitability of the models they 
used beyond prediction. Morris answered that after developing a model, he uses it 
to generate data for comparison to the original data used to create the model. Allen 
added that model averaging or consensus models are other strategies that can be 
used to compare and improve inference from complex models.

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


30

The second session focused on inference about causal discoveries from large 
observational data such as electronic health records (EHRs). A primary goal of 
biomedical research with big data is to infer causative factors such as specific ex-
posures or treatments; however, theories of causal inference in observational data 
(e.g., Pearl, 2000) remain relatively open in the context of large, complex data sets 
containing many treatment variables with possible interactions. Comparative effec-
tiveness research using EHRs faces challenges related to potentially large amounts 
of missing data (“missingness”) and associated bias, confounding bias, and co-
variate selection. Joseph Hogan (Brown University) discussed mathematical and 
statistical modeling of human immunodeficiency virus (HIV) care using EHRs. 
Elizabeth Stuart (Johns Hopkins University) further elaborated on synergies and 
trade-offs between mathematical and statistical modeling in the context of causal 
inference and public health decision making. Sebastien Haneuse (Harvard Uni-
versity) described a comparative effectiveness study on the effects of different 
antidepressants on weight gain using EHRs. In the last presentation, Dylan Small 
(University of Pennsylvania) demonstrated isolation of natural experiments within 
EHRs through a case study evaluating the effect of childbearing on workforce 
participation. 

4
Inference About  

Causal Discoveries Driven by  
Large Observational Data
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USING ELECTRONIC HEALTH RECORDS DATA FOR CAUSAL INFERENCES 
ABOUT THE HUMAN IMMUNODEFICIENCY VIRUS CARE CASCADE 

Joseph Hogan, Brown University

Joseph Hogan discussed the use of EHRs to compare recommendations for 
when to initiate HIV care for patients in low- and middle-income countries. 
Although the work is still ongoing, this type of analysis can be used to infer how 
different treatment strategies impact patient progression through the HIV “care 
cascade.” He explained that the HIV care cascade is a conceptual model for under
standing progression through stages of HIV care and is composed of (1) diagnosis, 
(2) linkage to care, (3) engagement or retention in care, (4) prescription of anti-
retroviral therapy (ART), and (5) viral suppression. Recommendations for when 
patients who test positive for HIV should begin treatment have evolved over time, 
said Hogan, in part due to the lack of available ARTs. In 2003, the World Health 
Organization recommendation was to begin ART if a patient’s cluster of differ-
entiation 4 (CD4)—an aggregate measure of immune system health—fell below 
200 cells/microliter, and this threshold has continually been increased due to accu
mulating evidence. The most recent guidelines call for initiating treatment for all 
HIV-infected individuals, regardless of CD4 count. The HIV care cascade is used 
to help formulate health care goals and institutional benchmarks—for example, 
the 90-90-90 goal put forth by the United Nations. This benchmark aspires to 
have, by 2020, 90 percent of HIV-infected patients aware of their status, 90 percent 
of those diagnosed with HIV receiving ART, and 90 percent of those receiving 
therapy having viral suppression, explained Hogan. These benchmarks present 
concrete objectives and create an impetus for empirical evaluation that must take 
into account statistical uncertainty, said Hogan. Evaluating progress in reaching 
these benchmarks is challenging because the necessary data are complex and come 
from multiple sources, and the care cascade is a dynamic and complex process. 
Furthermore, there is a trade-off between rigor and clarity, said Hogan, as program 
managers need interpretable information to evaluate progress and make decisions 
about new policies or interventions. 

One of the simplest approaches is to aggregate data into a histogram showing 
the number of patients in each stage, which presents a static snapshot and pro-
vides limited insight into the cascade as a process. More recently there is growing 
interest in modeling the entire HIV care cascade, typically using microsimulation 
techniques based on complex, nonlinear state-space mathematical models. Typi-
cally these approaches assume an underlying parametric model, aggregate data 
from numerous different sources to quantify relevant parameters, calibrate the 
model against known target outcomes, and then explore the effects of alternative 
interventions through iterative simulation. Mathematical models are modes of 
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synthesis that are advantageous because they can represent highly complex systems, 
and calibration ties the model to some observed data, said Hogan. However, there 
are several limitations to keep in mind when interpreting results; for instance, it is 
unclear if the models represent one population of interest and reflect causal effects 
when parameter values are adjusted. Hogan provided an example from the litera-
ture of one such model used to compare the effects of different treatment strategies 
on patients’ progression through the care cascade (Ying et al., 2016; Genberg et al., 
2016). The model specifies 25 states as a function of a viral load and CD4 count 
and defines a system of equations to calculate state transition probabilities based 
on primary data and the literature. With values for all parameters, the model is 
run and calibrated using 30 years of historical data, and then the model is used 
to project differences in HIV prevalence and incidence associated with alternative 
scenarios of treatment and home counseling. Nonetheless, Hogan said, without 
formal measures of uncertainty it is unclear whether the modeled differences in 
HIV incidence are significant. 

With growing availability of EHRs containing longitudinal data for thousands 
of patients, Hogan explained that it is possible to develop statistical models of the 
HIV care cascade that are representative of a well-defined population in actual care 
settings. However, he cautioned that using observational EHR data can be chal-
lenging compared to using data from a cohort study due to irregular observation 
times and abundance of confounding factors. More fundamentally, it is difficult 
to operationalize concepts such as “being retained in care” from observational 
EHR data, said Hogan, and requires up-front effort somewhat analogous to pre
processing of genomics data. 

Using data extracted from EHRs and maintained by the Academic Model Pro-
viding Access to Healthcare (AMPATH) consortium, Hogan described a statistical 
model for comparing the effects of two HIV treatment strategies—treat upon 
enrollment regardless of CD4 count or treat when CD4 ≤ 350cells/microliter—on 
patient progression through the care cascade. The database included information 
on over 57,000 individuals in care. A patient can be in one of five well-defined 
states: engaged, disengaged, lost to follow-up, transferred, or dead (Figure 4.1A). 
The probability of transitioning from one state to another is calculated from the 
aggregated AMPATH EHR data set. Based on these probabilities, the one-step 
transition model is used to predict the probability of state membership from en-
rollment through 1,800 days (Figure 4.1B), which stops short of causal inference 
but presents data in an easily interpretable format for health care decision makers. 

Hogan extended this model to compare the two treatment strategies mentioned 
above by assuming that treatment is randomly allocated for individuals sharing 
the same observed-data history, that the length of follow-up depends only on the 
observed-data history, and that the model follows first-order Markov dependence. 
Thus, implementing this method requires fitting a sequence of observed-data 
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FIGURE 4.1  (A) One-step transition model used to represent patient progression through the HIV 
care cascade and (B) an illustration of how predicted state probabilities can be represented as a func-
tion of time. NOTE: LTFU, lost to follow-up. SOURCE: Joseph Hogan, Brown University, “Using EHR 
data for causal inferences about the HIV care cascade,” presentation to the workshop, June 8, 2016.

models for state membership conditional on previous CD4 count, treatment his-
tory, and other covariates, as opposed to the complex model assumed in mathe-
matical models. The method also requires an observed-data model for time-varying 
covariates such as CD4 count, which can be checked for adequacy and elaborated 
if the fit is poor. Hogan illustrated how to implement the method for the case 
where time-varying CD4 count is treated as the main confounder. The method 
is implemented with a G computation algorithm using Monte Carlo simulation 
to average over the distribution of time-varying CD4 count (i.e., to calculate the 
high-dimensional integral over multiple time points). Hogan showed that the 
resulting predicted-state probabilities over time for the two treatment strategies 
that indicate starting treatment upon diagnosis and regardless of CD4 count leads 
to more patients remaining engaged and fewer patients lost to follow-up. Building 
a statistical model allows for formal quantification of uncertainty and application 
of standard methods, such as confidence intervals and hypothesis tests, to support 
inferences about effects of interest. 

In comparing statistical and mathematical approaches to modeling the HIV care 
cascade, Hogan described the former as beginning with as much data as are available 
and building a simple mathematical model to describe the data, whereas mathemati-
cal models typically focus on building a more complex process model and then using 
select historical data for calibration. In short, mathematical models focus more on 
the model and less on the data, and conversely statistical models focus more on the 
data and less on the model. Given the abundance and complexity of information 
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in EHRs, there is an opportunity to combine elements of both approaches to make 
models that align closely with data but support a higher level of complexity, said 
Hogan. Mathematical modeling techniques can enrich statistical models in several 
ways—for example, in representing missing information in data sets or integrating 
outside data—with the goal of increasing model complexity while maintaining close 
alignment with observed data from a specific cohort. He suggested that statistical 
principles be integrated into informatics systems to ensure that decisions based on 
EHR data are well-grounded by rigorous inferences. Similarly, Hogan described the 
need for a framework for grading evidence that is used and produced by models—for 
example, by considering if the data describe a well-defined population of interest, if 
different sources of uncertainty are identified, if the model fit is evaluated, among 
other criteria. Hogan concluded that as complex, messy, information-rich EHR data 
become increasingly available and are potentially used to inform treatment decisions, 
practice patterns, and health care policy, “Statistical principles could hardly be more 
important.”

DISCUSSION OF CAUSAL INFERENCES ON THE 
HUMAN IMMUNODEFICIENCY VIRUS CARE CASCADE 

FROM ELECTRONIC HEALTH RECORDS DATA 

Elizabeth Stuart, Johns Hopkins University

In mental health research there is increasing interest in comprehensive sys-
tems modeling, said Elizabeth Stuart, which is an area ripe for combining math-
ematical and statistical modeling. However, large-scale mathematical models 
typically require more assumptions than statistical models and may contain 
unnecessary complexity that is irrelevant to the specific decision context. There 
is a tension between creating large, detailed models that are descriptive of real-
world complexities and small, simpler models that are often required to answer a 
given question. Thus it is critically important to target analyses toward particular 
parameters or questions of interest, said Stuart, as a way to simplify models and 
limit assumptions. For example, structural equation models are powerful for ex-
ploratory analyses because they include more effects and correlations than other 
inference techniques such as linear regression; however, these models require 
additional assumptions that may not be valid or necessary to answer questions 
related to a single causal effect (VanderWeele, 2012). When using methods that 
require strong assumptions and data without good empirical estimates, Stuart 
encouraged researchers not only to acknowledge and communicate the limita-
tions, but also to assess the sensitivity of results to those limitations. It is critical 
to keep the ultimate goals and quantities of interest in mind when developing 
methods to evaluate evidence, she said. 
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Another challenge when estimating and drawing more complex models for 
causal inference is formalizing the potential outcomes. For example, in comparing 
the effectiveness of two treatment strategies there are two potential outcomes: a 
patient either receives treatment or stays in the control group. These are different 
random variables that are almost never both depicted on graphical models. Stuart 
said that it can be problematic to bundle the two outcomes together because it is 
possible that there is a different relationship between the covariates and outcome 
under one treatment than the other treatment. To demonstrate this point, Stuart 
described her experience analyzing the effectiveness of a marital intervention using 
the self-reported variable “relationship quality,” which was interpreted differently 
by subjects in the intervention (treatment) and control groups. For example, some 
subjects who did not receive the intervention and divorced still reported high 
relationship quality because they rarely had to interact with their partner, whereas 
other subjects conceived of “relationship quality” differently. 

Regarding standards of evidence and the pros and cons of different study 
designs, Stuart described the ongoing debate in mental health research regard-
ing experimental versus nonexperimental studies. Conventional wisdom is that 
experimental studies are always preferable because they allow greater control and 
lower bias, but this may be misleading when the objective of the study is to estimate 
a population treatment effect, said Stuart. It is critical to consider both internal 
and external validity as well as sources of bias (Imai et al., 2008), she said, and 
when estimating population effects it is possible that a small nonrepresentative 
randomized trial actually has more bias than a large nonexperimental study in a 
representative sample. Stuart was optimistic that with increasing access to big data 
such as population-wide EHRs, there would be the opportunity to conduct well-
designed nonexperimental studies that provide better evidence about treatment 
effectiveness in the real world. 

In conclusion, Stuart reiterated that the community needs tools to assess 
which parameters and assumptions matter most in large, complex models and to 
prioritize these for further investigation and refinement. One strategy is to formal-
ize sensitivity analyses, particularly in large, complex mathematical models with 
many underlying assumptions and parameter values that are characterized by high 
or unknown uncertainty. In addition to uncertainty, there is a need for methods 
to account for the fact that data drawn from multiple studies represent different 
populations, said Stuart. Finally, it is relatively easy to perform validation exercises 
with predictions, but validation of causal inferences is more nuanced and requires 
further work. 
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PANEL DISCUSSION

During a panel discussion with Joseph Hogan and Elizabeth Stuart following 
their presentations, a participant mentioned a technique called Bayesian melding1 
and inquired as to how much it informed Hogan’s work. Hogan responded that 
he is aware of this technique and similar work on Bayesian calibration that speci-
fies full likelihood distributions for variables and then collects them into a com-
mon model. Moderator Michael Daniels (University of Texas, Austin) commented 
that although the methods may be similar, the application contexts are different 
in that EHRs provide much richer data. Hogan explained that one approach 
for the EHR context would be to build out from a statistical model—for example, 
the AMPATH data have limitations in that many patients are lost to follow-up and, 
despite some evidence from other sources that many of the patients have died, the 
EHR data have incomplete information on mortality. Researchers associated with 
AMPATH have done tracing studies to track down a subset of patients who are lost 
to follow-up and then incorporate that information back into the statistical model 
to generate new estimates of mortality across the population of interest. Going a 
step further, said Hogan, would be identifying data collected from other studies to 
integrate into the AMPATH study, but this would require a strategy to account for 
the different populations being represented. 

Another participant inquired how confounding variables should be identified, 
mentioning ongoing work in data-driven identification of relevant confounders 
using large, messy medical claims data sets. Stuart answered that confounding 
variable selection should ideally be driven by scientific understanding and be inde
pendent of the data, and she emphasized the importance of a strong separation 
between research design and analysis. This is often difficult in an EHR scenario, 
particularly if the analysis is looking across large numbers of parameters and 
outcomes. Additionally, much of the data-driven confounder selection work has 
been done with data from single time points, and it is important to consider how 
this changes with time-varying confounders. Hogan commented that CD4 was 
chosen as a confounder because it is arguably the strongest measured predictor 
of treatment selection and outcome, as evidenced by both empirical and scientific 
understandings of ART’s role in HIV suppression. Regarding the broader ques-
tion, empirical selection of confounders is another example where there is tension 
between statistical theory and practice, said Hogan, because in theory it is impos-
sible to know whether a sufficient set of confounders has been selected. He said 
he is hesitant to apply data-driven approaches to confounder selection using data 
such as those from an EHR, in part because the data structure is so irregular, but 
perhaps more importantly because it might not be a representative sample from 

1   Bayesian melding combines mathematical modeling with data (e.g., Poole and Raftery, 2000).
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a population of interest. Hogan described a hypothetical example: suppose HIV 
treatment recommendations are based on the CD4 count being above a specified 
threshold, yet in practice treatment is not allocated strictly according to the policy. 
That is, many people with CD4 just over the threshold receive treatment while 
many just under the threshold do not. If patients in a sample are selected from 
among those whose CD4 is near the threshold, it is possible that CD4 will not be 
chosen as a potential confounder based on purely empirical grounds because, in 
this subset, it will not be strongly correlated with receiving treatment. In this case, 
a person with contextual knowledge would recognize that this sample may not be 
well suited to addressing the causal question because it does not allow leveraging 
of important information from a well-known confounder. This limitation can-
not be discovered by a confounder selection method that is purely empirical. The 
fundamental inferential issue in this hypothetical example is not the method used 
to select confounders, but rather whether analysts have a properly selected sample. 

In the final question, a participant commented that mathematical models and 
microsimulation typically have some calibration against observed data taken to 
be ground truth and asked what was analogous when using statistical models for 
causal inference. Stuart responded that for any given individual, the causal effect 
cannot be known because one potential outcome might be observed while there 
is no information on the other. In practice, researchers can calibrate the control 
group and calibrate the treatment group, but there is a missing piece in bringing 
these together. Hogan agreed, saying that researchers should test sensitivity of 
findings to departures from key assumptions, particularly when drawing causal 
inferences from large observational data. Perhaps the most important of these 
is the assumption of “treatment ignorability” or “no unmeasured confounding.” 
Moreover, correctly predicting the outcome of a treatment from observed data does 
not validate that the treatment caused that outcome. He encouraged participants 
to think of causal inference in terms of factoring a joint distribution of observed 
and unobserved potential outcomes, and he noted that clearly separating these 
two components in a model makes untestable assumptions clear and leads to more 
coherent and transparent inferences. 

A GENERAL FRAMEWORK FOR SELECTION BIAS DUE TO  
MISSING DATA IN ELECTRONIC HEALTH RECORDS-BASED RESEARCH 

Sebastien Haneuse, Harvard University

Sebastien Haneuse began by reiterating a fundamental difference in the scien-
tific goals of comparative effectiveness research—for example, Hogan’s presenta-
tion comparing two HIV treatment strategies—and exploratory analyses, as dis-
cussed in the workshop’s first session. With this context, Haneuse described a case 
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study using EHRs to evaluate whether different antidepressants or classes of anti
depressants have differential impacts on patients’ long-term (i.e., after 24 months) 
weight change. Some drugs were hypothesized to lead to weight gain while others 
were not, and these side effects were assumed to be independent of effectiveness of 
the antidepressant. The analysis was a retrospective longitudinal study conducted 
with electronic databases maintained by the Group Health Cooperative, which con-
tained full EHRs based on EpicCare as of 2005; pharmacy data dating back to 1977; 
and additional databases that track demographic data, enrollment information, 
claims data, and primary care visits. Inclusion-exclusion criteria were as follows: 
(1) the patient must be between 18 and 65 years of age, (2) the patient must have 
undergone a new treatment between January 2006 and December 2007, and (3) the 
patient must have been continuously enrolled for at least 9 months. Application of 
these criteria to the available EHR data resulted in a sample of roughly 9,700 patients 
from which data on weight, potential confounders, and auxiliary variables were 
extracted for the 2-year interval prior to initiation of the new treatment through 
2009. Although weight is a continuous variable, EHR data contain only snapshots 
of a patient’s weight trajectory, said Haneuse, and there is wide variability among 
the frequency of visits across patients. Thus, some patients have rich information 
on weight change, while the majority of patients have limited information. 

EHR data can provide a large sample size over a long time period at a low cost 
compared to dedicated clinical studies; however, it is critical to remember that EHR 
data were not collected to support specific research tasks. Haneuse encouraged 
researchers to compare available EHR data to the data that would result from a 
dedicated study, saying that observational data probably do not have comparable 
quality and scope. There are additional practical challenges to using EHR data, 
such as extracting text-based information contained in clinician notes, inaccurately 
recording information, linking patient records across databases, and confounding 
bias. Although some of these challenges are not new and are encountered in tradi
tional observational studies, existing methods for addressing them are ill suited 
for the scale, complexity, and heterogeneity of EHR data, said Haneuse. There is 
an emerging literature focused on statistical methods for comparative effectiveness 
research with EHRs that has focused largely on resolving confounding bias, whereas 
problems of selection bias and missing data are underappreciated. In the context of 
the antidepressant study, EHR data would ideally contain information on weight 
at baseline and 24 months for each patient, yet in reality less than 25 percent of 
patients had both measurements, leaving 75 percent of patients with insufficient 
information to compute the primary outcome. One approach is to simply restrict 
the analysis to the subsample of patients for which complete data are available. 
However, this raises questions about the extent to which conclusions drawn from 
the subsample are generalizable to the population of interest. Haneuse defined 
selection bias as the difference between conclusions drawn from the subsample 
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and conclusions that would result from complete information for the entire study 
population. Selection bias can thus be framed as a missing data challenge, for which 
there is a large amount of literature and methods that may be useful.

The validity of all methods for missing data relies on the assumption that data 
are missing at random, which Haneuse explained means that missingness depends 
solely on known variables, and thus the analyst can control for missingness with 
known information. Evaluation of this assumption typically proceeds by conceiv-
ing of a potential mechanism that determines whether or not data are missing, 
identifying factors that influence this mechanism, and evaluating whether these 
factors are described in available covariates. Haneuse argued that focusing on a 
single mechanism is overly simplistic for EHRs, which are high dimensional and 
heterogeneous, and in the context of clinical health care provision. For example, in 
the case of antidepressant-related weight change, there is no single mechanism that 
is responsible for determining whether a patient’s weight is recorded, but rather a 
complex combination of patient and clinician decisions. This simplistic approach 
may not fully account for missingness and may result in residual selection bias, 
which can compromise the generalizability and utility of results, said Haneuse. 

Haneuse described a general framework for addressing selection bias in analysis 
of EHR data. Given the high complexity and heterogeneity of EHR systems, it is 
unlikely that any single method will be universally applicable, so Haneuse suggested 
that researchers consider two guiding principles: (1) identify the data that would 
result from the ideal study designed to answer the primary scientific question and 
(2) establish the provenance of these data by considering what data are observed 
and why. This process will generally involve identifying all variables that would 
have been collected and indicating the timing of all measurements, with additional 
details depending on the goal of the study, before even looking at available EHR 
data. Conceiving of the ideal study and resulting data allows for a concrete defini-
tion of complete and missing data, which analysts can use to characterize why any 
given patient has complete or missing data. Specifically, Haneuse presented the 
general strategy of decomposing the single-mechanism model of why a patient 
has missing data into a series of more manageable submechanisms, with each sub-
mechanism representing a single decision. In the antidepressant-related weight gain 
case study, Hanuese proposed three sequential submechanisms that each partially 
determines if a patient’s EHR data contain a weight measurement at 24 months: 
the patient must be enrolled at 24 months, the patient must have been treated at 
24 months (±1 month), and the patient’s weight must have been recorded at this 
treatment (Figure 4.2).

Breaking down missingness into more granular submechanisms allows each to 
be explored in greater detail, whereas the single-mechanism approach represents an 
average of these mechanisms. Haneuse evaluated the number of patients meeting 
the criteria of each submechanism, calling attention to the heterogeneity across 
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FIGURE 4.2  Comparison of (A) a simple single-mechanism approach to modeling missing data 
and (B) a more detailed specification consisting of three submechanisms responsible for missing-
ness. NOTE: Sx, random variable; S=0, missing information; S=1, complete information. SOURCE: 
Reproduced from Haneuse, S., and M. Daniels. 2016. A general framework for considering selec-
tion bias in EHR-based studies: What data are observed and why? eGEMS (Generating Evidence 
& Methods to Improve Patient Outcomes) 4(1): article 16. doi:http://dx.doi.org/10.13063/2327-
9214.1203, http://repository.edm-forum.org/egems/vol4/iss1/16, licensed under a Creative Commons 
Attribution-Noncommercial-No Derivative Works 3.0 License (https://creativecommons.org/licenses/
by-nc-nd/3.0/).

patient EHRs. Showing odds ratios from logistic regression models for the single-
mechanism and three-mechanism models, Haneuse emphasized that different 
covariates can have different effects on each submechanism, which makes it diffi-
cult to interpret the significance of coefficients from the single-mechanism model. 
While the preceding example focused on three specific mechanisms, Haneuse said 
there are many alternative submechanisms that cause missing data that could be 
considered. For example, patients could receive treatment from an outside medical 
system or could receive clinical advice via the phone or secure messaging, both of 
which would result in missing weight measurements at 24 months. However, not 
all mechanisms will be relevant for any given EHR context or analysis question.

The proposed framework enhances transparency in assumptions regarding 
missing data, facilitates elicitation of factors relevant to each decision, and pro-

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


41C a u s a l  D i s c o v e r i e s  D r i v e n  b y  L a r g e  O b s e r v a t i o n a l  D a t a

motes closer alignment between statistical methods and the complexity of the data, 
said Haneuse. Existing methods such as inverse probability weighting or multiple 
imputations can be combined with the multi-mechanism framework proposed, 
and multiple methods can be mixed in one analysis—for example, use of inverse 
probability weighting for some submechanisms and imputation for others—in 
what Haneuse termed “blended analyses.” Similarly, data-driven methods for vari-
able selection developed to address bias from confounding may be adapted to the 
context of selection bias to understand which submechanisms and variables are 
most relevant. One of the most interesting areas, said Haneuse, is using this ap-
proach to prioritize future data collection efforts to supplement the information 
available in EHRs. He emphasized that these methods will become increasingly 
important as EHRs become the norm in clinical practice.

Haneuse concluded that EHR systems may be designed for secondary research 
purposes in the future but, until then, the majority of researchers using EHRs will 
try to model the best they can with the most information possible. Haneuse sug-
gested that grounding the modeling within the context of the ideal designed study 
is appealing because it requires explicit definition of both the target population of 
interest and what it means to have complete data. This approach can help focus 
the scientific inquiry at the expense of unutilized information (for example, all of 
the patient weight measurements between 2 and 22 months), but this may be a 
relatively small price to pay, said Haneuse. 

DISCUSSION OF COMPARATIVE EFFECTIVENESS 
RESEARCH USING ELECTRONIC HEALTH RECORDS

Dylan Small, University of Pennsylvania

Dylan Small reminded participants that using EHRs for comparative effective-
ness research can be cheaper, faster, more representative of real-world effectiveness, 
and more statistically powerful (due to large sample sizes) than randomized trials. 
However, comparative effectiveness studies using EHRs face serious challenges 
regarding confounding and selection bias, said Small. He added that Haneuse pre-
sented an elegant framework for addressing selection bias that can better engage 
clinicians in thinking through why data are missing. Small remarked that another 
potential application of Haneuse’s multi-mechanism framework could be identifi-
cation of subsets of the data for which missingness could be regarded as missing at 
random, analogous to selective ignorability for confounding bias (Joffe et al., 2010). 

Shifting to confounding bias in EHR data, Small recounted calls to largely 
replace randomized trials with EHR-based studies (Begley, 2011), because EHRs 
contained detailed information on sufficient confounding variables to safeguard 
against errors that beguiled other observational studies in the past. However, Small 
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cautioned that confounding by indication—for example, that clinicians likely pre-
scribe more aggressive treatments to patients with worse-perceived prognoses even 
if that treatment has a higher likelihood for side effects—will persist in comparative 
effectiveness studies using EHR data. He described Olli S. Miettinen’s warning that 
when a rational reason for an intervention exists, it tends to constitute a confounder 
(Miettinen, 1983); thus, the need for randomized trials is accentuated in studying 
a desired effect (e.g., comparative effectiveness research) more than when study-
ing an unintended effect (e.g., comparative toxicity studies). Such confounding can 
be quite subtle and complex in the clinical health care context, and comparative 
effectiveness studies using EHR data need to critically consider why two patients 
with similar observed covariates received different treatments. Unless the treat-
ments are assigned entirely at random, any causal inference made is subject to bias 
and is potentially misleading, said Small. 

One strategy to develop reliable causal inferences from EHR data is to look for 
natural experiments contained in subsets of the data and apply quasi-experimental 
tools, such as multiple control groups or secondary outcomes known to be unaffected 
by the treatment, to test for hidden bias. Small described one example comparing the 
effect of childbearing on workforce participation (Angrist and Evans, 1998) to evalu-
ate whether having more children reduces a mother’s working hours. He explained 
that answering this question presents challenges related to confounding by indication 
because many births are planned and nonrandom (Zubizarreta et al., 2014). One tool 
to isolate natural experiments from larger data sets is to focus on differential effects 
by comparing workforce participation between women who had twins versus single 
births, for example, as opposed to comparing women who have children to those 
with no children. “Risk set matching,” a second tool for isolating natural experiments, 
compares women who had similar covariates up to the time of birth—for example, 
comparing women who have had the same number of births (among other variables) 
as opposed to comparing mothers with three children to first-time mothers. Small 
showed results from the isolated natural experiment indicating that the median frac-
tion of a 40-hour work week performed was slightly (approximately 8 percent) lower 
for mothers of twins compared to the control groups, and this difference became 
more pronounced with increasing numbers of births. 

In a second example of comparing differential effects, Small described evalua-
tion of the effects of pain relievers on Alzheimer’s risk, testing the theory that non-
steroidal anti-inflammatory drugs (NSAIDs) such as Advil™ may reduce patient 
risk. However, there is potential confounding from the possibility that early-stage 
Alzheimer’s patients are less aware of physical pain and thereby less likely to take 
NSAIDs. To control for this confounding, Small suggested comparing Alzheimer’s 
risk between patients taking NSAIDs and those taking non-NSAID pain relievers 
like Tylenol™ as one such natural experiment available in EHR data. Small con-
cluded that EHRs and other sources of big data do hold a lot of promise, but long-
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known problems of selection and confounding bias must be addressed. Isolating 
natural experiments is one strategy to reduce confounding bias.

PANEL DISCUSSION

In a follow-on panel discussion with Sebastien Haneuse and Dylan Small, 
a participant described Haneuse’s strategy of comparing EHR data to data that 
would result from the ideal randomized trial as the appropriate way for statisti-
cians and other researchers to reason through causal discoveries made from big 
data, as opposed to simply extracting as much as possible using advanced methods 
such as machine learning. The participant asked if Haneuse had considered a way 
to quantify the extent of missingness, similar to a missing information ratio, rela-
tive to the ideal study design. Haneuse responded that the approach does allow 
for concrete definition of complete and missing data, though he had not thought 
about this particular issue of quantification.

Another participant asked generally what researchers in the field could do 
to raise awareness of these issues and make the appropriate statistical methods 
available, particularly given the anticipated growth in EHR data collection and 
availability. Haneuse said that it takes years before statistical methods from litera-
ture are adopted by practitioners, and he suggested that researchers engage in simi-
lar workshops and discussions more frequently. Another participant said that many 
issues and sensible approaches to using EHR data are known and documented 
in the literature, and Small commented that some journals are more statistically 
rigorous than others. 

One participant said that conceiving of the ideal study design as a basis for 
defining data needs was potentially risky because it could lead one to disregard 
available data that do not correspond to this design—for example, not using patient 
weight measurements taken at 18 months. Haneuse clarified that those measure-
ments do have useful information that should be used in solving the missing data 
challenge and reiterated that researchers should use the ideal study design to help 
define complete and missing data, using any information that is available.
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The third session of the workshop explored inference after a regularization 
technique is applied to reduce the number of parameters being fit in a model. 
In many analyses of big data, the number of variables (p) described in available 
data greatly exceeds the number of observations (n), which presents challenges 
for classical inference methods based on the assumption that n is much larger 
than p. Approaches for such high-dimensional inference that rely on sparsity 
assumptions—that the number of nonzero effects is limited—have emerged over 
the past two decades. However, important questions remain regarding methods for 
uncertainty quantification and the validity of underlying assumptions for increas-
ingly complex questions and data sets. Daniela Witten (University of Washington) 
introduced novel methods for learning the structure of a graphical model from 
gene expression and neural spike train data, and she discussed the gap between 
statistical theory and practice in the context of theoretical results associated with 
high-dimensional model fitting. Michael Kosorok (University of North Carolina, 
Chapel Hill) elaborated on model selection consistency1—the consistency of the 
support of the selected model—and suggested alternative approaches to inference 
after regularization, concluding with an appeal to consider the validity of model 
assumptions and to develop new methods with less stringent assumptions. Jonathan 
Taylor (Stanford University) introduced methods for selective inference, where data 
splitting and data carving are used for both model selection and the inference task. 

1   For additional information on model selection consistency, see Zhao and Yu (2006) and Lee et 
al. (2013).

5
Inference When Regularization 

Is Used to Simplify Fitting of 
High-Dimensional Models
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Emery N. Brown (Massachusetts Institute of Technology, Massachusetts General 
Hospital, and Harvard Medical School) reviewed the Box-Tukey paradigm in 
the context of neuroscience and discussed the importance of statistics education 
broadly. Xihong Lin (Harvard University) described the growing size of genetic 
and genomic data sets and associated statistical challenges and emphasized the im-
portance of statisticians engaging early in experimental design and data collection. 

LEARNING FROM TIME

Daniela Witten, University of Washington

Daniela Witten began by describing methods for learning the structure of 
graphical models, which represent interrelationships between multiple random 
variables (Figure 5.1A), from large biomedical data sets that contain measurements 
taken over time. Time is incredibly important in biological processes, said Witten, 
providing the illustrative example of progenitor cells developing through several 
stages to become mature muscle fibers. If available data only represent observations 
from one point in time, it is challenging to develop a complete understanding of 
this dynamic biological process. Alternatively, averaging data representative of these 
different stages over time may also be misleading and may potentially undermine 
the goals of the inference task.

Witten presented a simplified example using gene expression data collected 
at discrete time points for nine genes—in real usage scenarios, there are typically 
thousands—with the goal of creating graphical models to represent regulatory 

A B 

FIGURE 5.1  Example of a (A) directed graphical model with nine nodes, constructed from (B) gene 
expression time course data. SOURCE: Produced by Shizhe Chen and presented by Daniela Witten, 
University of Washington, “Learning from time,” presentation to the workshop, June 9, 2016. 
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relationships between individual or groups of genes (Figure 5.1B). She proposed 
a model in which the observed time-course data (Yj) for expression of each of p 
genes can be modeled as a smooth noiseless trajectory (Xj) that cannot be directly 
observed, plus an error term (εj):

	 Yj(ti) = Xj(ti) + εj(ti).	   eq. 5

Witten described an additive differential equation model for the underlying noise-
less trajectories as follows:

	
d
dt

X j t( ) =Cj + fjkk=1

p∑ Xk t( )( ), 	 eq. 6

where the function fjk is unknown. Witten explained that it is not necessary to 
know the functional form of fjk for structure learning beyond knowing whether 
it is exactly zero, which indicates that there is no regulatory relationship or cor-
responding graph edge. Fitting this nonparametric model is challenging, explained 
Witten. As fjk is unknown, she described approximating it with a set of fixed basis 
functions y = (y1 ... yM)T (Ravikumar et al., 2009) such that

	
d
dt

X j t( ) ≈Cj + ψ
k=1

p∑ Xk t( )( )Tθ jk . 	  eq. 7

Equation 7 is linear in qjk, a vector of length M, which simplifies model fitting sig-
nificantly. However, the high dimensionality of the model is still challenging, with 
order Mp2 unknown parameters, and the number of time points at which there are 
measurements (N) is typically much smaller than Mp2. To reduce the dimensional-
ity of the problem, Witten applied a group lasso penalty to induce sparsity in the 
data by encouraging the vector qjk to be either exactly zero or completely nonzero 
(Yuan and Lin, 2006; Simon and Tibshirani, 2012). 

Another critical challenge faced in fitting the model shown in equation 7 is that 
the underlying noiseless trajectory Xj(t) for the expression of gene k is unobserved, 
said Witten. In practice, analysts can apply smoothing splines or fit a local poly-
nomial regression to the observed values (Yj) and use this to estimate the noiseless 
trajectories (e.g., Wu et al., 2014; Henderson and Michailidis, 2014). Unfortunately, 
a naïve application of this strategy results in many errors. Specifically, even if a 
smoothed Yj is a good estimate of Xj, the derivative of the smoothed Yj values is 
usually a poor estimate of the derivative of Xj because even minor differences are 
exaggerated when taking the derivative. Witten noted that a clever strategy is to 
integrate both sides of equation 7 (Dattner and Klaassen, 2015), as the integral is 
less sensitive to small differences between Yj and Xj and it is not difficult to estimate 
with observed information. This leads to an equation of the form

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


47I n f e r e n c e  w h e n  R e g u l a r i z a t i o n  I s  U s e d  t o  S i m p l i f y  F i t t i n g

	 X j ti( )−X j 0( ) ≈ tiCj + ψ Xk s( )( )ds
0

ti∫⎡⎣⎢
⎤
⎦⎥k=1

p∑ ⋅θ jk . 	 eq. 8

Replacing the derivative in equation 7 with an integral in equation 8 reduces the 
number of time points (N) necessary to recover the graph, in theory and in practice, 
Witten said. Extending Loh and Wainwright (2011), she established variable selec-
tion consistency—that the method consistently identifies the graph structure—for 
the standardized group lasso regression with errors in measured variables. The 
proposed method correctly identifies the parents of each node, which correspond 
to regulatory genes, with high probability and performs better than other methods 
in the literature.

Moving to her second example, Witten discussed graph estimation from neuron 
firing data collected continuously over time (e.g., Pillow et al., 2008), simplifying 
the example to only nine neurons although actual data sets contain measurements 
on many more neurons over large time periods. Each neuron can enhance, inhibit, 
or have no effect on the firing rate of other neurons, and a graphical model created 
from spike train data can intuitively present this information. Witten explained the 
Hawkes Process for modeling point processes (Hawkes, 1971), which defines an 
intensity function for neuron j (lj) representing the instantaneous probability of 
the neuron firing as follows:

	 λ j t( ) = µ j + ω j ,k t − tk ,i( )i:tk ,i≤t
∑k=1

p∑ , 	 eq. 9

where mj is the background intensity, wj,k is a transfer function that encodes the 
effect of neuron k firing on the intensity function of neuron j, and tk,i is the time 
at which neuron k has spiked i times. The transfer function wj,k contains the criti-
cal information: if it is exactly zero, there is no graph edge connecting neurons j 
and k. As the functional form of wj,k is unknown, similar to the gene expression 
example, a set of basis functions (y1 ... yM) is used as an estimate. This leads to 
the following equation:

	 λ j t( ) ≈ µ j + ψ t − tk ,i( )⎡⎣ ⎤⎦i:tk ,i≤t
∑k=1

p∑
T
β jk . 	 eq. 10

There is a similar equation for each of p neurons; thus, fitting this high-dimensional 
model requires estimating p2 transfer functions. Witten again applied a group 
lasso penalty to induce sparsity in the vector (bjk) of length M such that values are 
either exactly zero, corresponding to no edge, or completely nonzero, correspond-
ing to a graph edge. This method has similar theoretical guarantees as in the gene 
expression example, specifically that the correct parent nodes are identified and 
that the estimated graphical models are selected with high probability from high-
dimensional data sets. 
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Stepping back from these specific examples, Witten discussed model selection 
consistency in greater detail, saying that it amounts to a theoretical guarantee 
that as the number of time points grows, it is increasingly likely that the method 
will exactly recover the structure of the graph. Unfortunately, when the incorrect 
graph is estimated there is no theoretical backing that any of the edges are cor-
rect, so model selection consistency provides an all-or-nothing guarantee. Witten 
said it would be preferable to gain an understanding of the uncertainty associated 
with each identified edge—for example, a p-value or posterior distribution—as 
opposed to the entire graph. In the examples presented, Witten expressed that she 
was skeptical of the practical implications of model selection consistency results. 
She challenged the audience to imagine returning to their biological collaborators 
with a graphical model depicting thousands of edges derived from gene expression 
data covering tens of thousands of unique genes and saying that, with probability 
approaching 1, this graph is 100 percent correct. That statement would not be 
taken seriously by a collaborator because the underlying models used are at best 
crude approximations of complex biological processes. Model selection consistency 
provides theoretical grounding but requires assumptions that certainly do not 
hold in practice, said Witten, which points to a deep disconnect between theory 
and practice. Witten cautioned that overconfidence in the practical implications 
of theoretical results such as these may actually undermine statisticians’ credibility 
in the eyes of biologists and other researchers. Thus, in the unsupervised learning 
context, Witten described graph estimation methods as tools for hypothesis genera-
tion and not for confirmatory analyses. 

DISCUSSION OF LEARNING FROM TIME

Michael Kosorok, University of North Carolina, Chapel Hill

Michael Kosorok began by saying that he is cautiously more optimistic than 
Witten and that establishing consistency in the structure of the graphical model 
is an important first step. Preferable measures of uncertainty such as a false dis-
covery rate or p-values may follow, but a lot of work done now does not take this 
first step of establishing model selection consistency. With consistency established, 
Kosorok described different aspects of the graphical model that inferences can be 
drawn on, including graph structure and edge direction, the magnitude and sign 
of model coefficients, or overall prediction or classification error of the model on a 
new or test data set. While there are several approaches in the literature, including 
establishing asymptotic normality (van de Geer et al., 2014) or conditioning on 
the estimated model structure (Lee et al., 2016), Kosorok emphasized that this is a 
critically important area for research. 
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Kosorok introduced the concept of rotational invariance as an alternative 
method to the lasso to induce sparsity in high-dimensional complex data sets. In 
a simple linear model with an error term e

	 Y = b′X + e,	 eq. 11

where the lasso assumes sparsity in b, which is reasonable when each feature has a 
distinct meaning such as different demographic variables. Kosorok posed this ques-
tion: What if the meanings of the features are interchangeable, as is the case when a 
researcher is not interested in one specific gene but rather in looking for combina-
tions or metagenes that affect the relevant outcome? In this context, Kosorok chal-
lenged the audience to consider an unknown rotation (M) for which the product 
Mb is sparse, asking specifically how this rotation could be estimated and what 
type of penalty would be necessary to make such an approach work. While this is 
a poorly defined problem, he said it may be helpful to bridge the divide between 
the model and estimation procedures that are available now and to consider how 
directly these methods address the scientific questions posed. 

Shifting topics to modeling interactions between variables, Kosorok reminded 
the audience that the lasso can be constrained to enforce strong heredity—that an 
interaction term can be included if and only if the corresponding individual terms 
are included as well. This can be achieved as a convex optimization problem with a 
global maximum guaranteed (Radchenko and James, 2010) and generalized to the 
lasso (Haris et al., 2016). Kosorok wondered whether the proposed methods for 
gene time course and neural spike train data can be generalized to allow for non-
parametric interactions—for example, by using tensor products of the bases—and 
suggested that this approach could be used to interrogate the additive structure of 
the model. Another way to think about interactions is as one part of a quadratic 
term (e.g., (X1 + X2)2 contains the interaction X1X2), said Kosorok, who suggested 
including squared terms in the model to capture interactions and to allow slight de-
partures from linearity. With this approach, it may be important to enforce strong 
heredity: (1) if either X1 or X1

2 are included, both must be included; and (2) if the 
interaction term X1X2 is included, both first-order and second-order terms must 
be included. A model containing all first-order terms, second-order terms, and 
pairwise interactions is preserved under arbitrary rotation and could be extended 
to allow for sparsity under unknown rotation, said Kosorok. 

Feature selection for a nonparametric regression is a related but distinct prob-
lem, in that if a variable is removed from the model, all of its interaction terms are 
also removed. Thus variable selection is clearly different from removing coefficients 
in the model and is different from grouping. Kosorok said it is possible to perform 
feature selection in a consistent manner that improves prediction error but noted 
that there is relatively little research in this area. One technique called reinforce-
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ment learning trees (Zhu et al., 2015) adaptively selects features while generating 
random forests and can significantly reduce error and improve convergence rates 
compared to so-called greedy approaches that minimize the immediate mean 
squared error. Kosorok clarified that these results are for nonlinear models, whereas 
the lasso performs better than reinforcement learning trees in terms of prediction 
error for linear models. 

Kosorok concluded by remarking that much work remains in the area of 
inference after regularization is used to simplify large, complex data sets. He en-
couraged researchers to decide carefully what elements of their model to perform 
inference tasks on, emphasizing that this decision must be clearly connected with 
the research goals. Although his presentation did not cover all of the methods of 
post-regularization inference, Kosorok noted that future methods should try to 
avoid relying on strong assumptions. 

PANEL DISCUSSION

Following their presentations, Daniela Witten and Michael Kosorok partici-
pated in a panel discussion. A participant commented that the skepticism expressed 
by Witten regarding the results of unsupervised analyses in which the model being 
used is known to be an oversimplification should be extended to the context of 
supervised analyses as well. The participant noted that the supervising parameters 
used are often subjective opinions or estimates and are not necessarily reliable, so 
caution must be exercised even in supervised analyses. Given that suggested models 
are crude approximations of complex biological processes, the participant asked 
if models should be interpreted as a projection of reality onto the assumed model 
space rather than an actual model of biological reality. Witten answered that her use 
of basis expansions is predicated on that idea, but she expressed concern that the 
model misspecification may be more fundamental than not having the appropriate 
basis set—for example, if the model is not additive or the biological process is sto-
chastic and cannot be modeled with additive differential equations. The old adage 
applies, said Witten, that there are known unknowns and unknown unknowns, and 
the latter is most concerning in the context of complex multivariate data sets. She 
added that it is not too difficult to develop a model for expression of one gene or 
firing of one neuron by specifying univariate distributions, but the real challenge is 
modeling the interactions within groups of genes or neurons as a multidimensional 
multivariate distribution. Regarding the first question, Witten responded that, in 
the supervised context, it is not a problem that a specific response is measured or 
provided to the analysts, although there will always be some irreducible error asso
ciated with that response that cannot be modeled. Nonetheless, the objective of a 
supervised analysis is to address reducible error as much as possible given a noisy 
response, whereas in the unsupervised context the response is totally unknown. 
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Another participant asked whether the structure of the graphical model was 
assumed to be stationary or was allowed to change over time. In a related com-
ment, the participant drew the comparison to mixed effects modeling in more 
traditional longitudinal data settings, saying that independent replication across 
subjects allows inference in this context. He asked if independent replication—for 
example, across gene expression data collected from multiple subjects—could be 
used to support first-order inference in this context. Responding to the first ques-
tion, Witten said her method for generating graphical models from time course 
data does require the assumption of stationarity in relationships over time, and 
allowing the graph to change form over time is a more challenging topic for future 
research. Answering the second question, Witten said that the method she intro-
duced assumes that noise from each measurement time and gene is independent 
and identically distributed, which avoids the mixed effects formulation and allows 
the simplest model. She noted that one could argue that the noise would be corre-
lated across time points or genes because of the measurement technologies, which 
are both valid points that will make modeling even more challenging. Kosorok 
asked if it would be helpful to consider parametric bootstrapping to obtain, shuffle, 
and reapply residual estimates that are assumed to be independent and identically 
distributed to see if stability is maintained. Witten answered that stability selection 
has been used in the literature. Referring back to Genevera Allen’s presentation, 
Witten described the best available option as generating a rank list of graph edges 
based on different data samples and graph estimation techniques, though this ap-
proach still falls short of fully quantifying uncertainty.

Reiterating Witten’s comment that graphical model estimation from large, 
complex multivariate data sets should be viewed as a way of generating hypotheses 
for future experimental investigation, one participant asked how the field could 
better communicate the uncertainty associated with these exploratory analyses. 
Kosorok answered that statisticians equivocate more than other fields, which may 
come across as less intellectually strong even though the equivocation is honest 
and grounded in available data. Ultimately it comes down to establishing trust and 
building partnerships with collaborators that leads to significant advances. Witten 
agreed, saying that while it is easy to get results that are incorrect, it is much more 
difficult to produce results that statisticians trust. Statistical training is powerful 
because it encourages a nuanced understanding of these issues, but this double-
edged sword also presents a challenge for the field and in how statisticians interact 
with their collaborators. Given the large disconnect between statistical theory and 
practice, Witten commented that some of the methods published in the biology 
journals are much simpler than the newer methods being published in statistics 
journals. Following up on this comment, one participant asked if simple pairwise 
correlations across time and subjects are the types of methods Witten uses in biol-
ogy papers. Witten responded that computing and thresholding correlation values 
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is often all that is needed in practice: they can often answer a biologist’s scientific 
question much more simply and with fewer assumptions than a more complicated 
method like the graphical lasso. Kosorok suggested that another approach is to use 
the estimated model to try to reproduce data sets and then to match moments, 
which is done in some stochastic processes that cannot be formulated as likelihood 
models. 

An online participant asked if there are guidelines or methods to selecting tun-
ing parameters for regularization methods, observing that the results of regulariza-
tion techniques are highly sensitive to both the random sample used and the value 
of these parameters. Witten responded that, in the context of supervised learning, 
the gold standard is to evaluate test error on a validation data set. In the context of 
unsupervised analyses, she continued, there is no gold standard for selecting tuning 
parameters. Graph estimation is useful to generate a relatively simple representa-
tion of large, complex data sets, said Witten. If the tuning parameter is too small, the 
graph is unreadable because too many edges are included; if the tuning parameter is 
too large, there are no edges estimated. Finding the appropriate balance is a subjec-
tive decision made by the statistician and his/her collaborators based on the level of 
detail that is desired in the resulting graph, said Witten. Kosorok commented that 
tuning parameter selection is challenging and usually done in an ad hoc fashion. 
He did not know of rigorous methods to suggest as a more satisfying alternative 
and suggested that future theoretical studies that are appropriately skeptical could 
help inform approaches that are slightly more automated. 

SELECTIVE INFERENCE IN LINEAR REGRESSION

Jonathan Taylor, Stanford University

Jonathan Taylor delivered a methodological presentation on selective inference, 
which he described as a compromise between exploratory and confirmatory analy-
sis that allows testing a hypothesis suggested by the data. Using an illustrative exam-
ple of mutation-induced human immunodeficiency virus (HIV) drug resistance, 
his analysis goal was to build an interpretable predictive model of resistance from 
a sequencing data set containing 633 distinct viruses with 91 different mutations 
occurring more than 10 times in the sample. Assuming sparsity in the 91 features 
is reasonable, and Taylor showed the results of an ordinary least squares fit to the 
data with only one or two features having large coefficient values. Taylor applied 
the square root lasso (Belloni et al., 2014; Sun and Zhang, 2012; Tian et al., 2015) 
in part because it does not require information about the level of noise in the data 
set to specify a theoretically justifiable tuning parameter. The lasso selected a subset 
of approximately 15 variables that represent mutation sites in the viral genotype, 
several of which are known in the HIV resistance literature. Fitting a regression 
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model—for example, a parametric Gaussian model—using these parameters will 
yield p-values or confidence intervals for each variable; however, these convey no 
information about significance and cannot be used because the data were used to 
select the model. Taylor said a significant challenge of selective inference is that 
there are good methods for model selection, but they use the data and therefore 
require new tools for reporting and interpreting the significance (Benjamini, 2010). 

One approach is to apply data splitting (Hurvich and Tsai, 1990; Wasserman 
and Roeder, 2009), in which a portion of the original 633 virus data set is used for 
variable selection and the remaining data are used for the inference task. Underly-
ing this approach is the justification that the second portion of the data used for 
model fitting is independent of the first portion of the data used in model selec-
tion, explained Taylor. After splitting the data set, the square root lasso identified 
11 variables; while there was some overlap from the first case described above, 
several differences emerged because different data were used in the two cases. 
Fitting a parametric Gaussian model with these variables to the unused portion 
of the data resulted in p-values or confidence intervals that, in principle, were 
justified, as the data used to select variables were independent of the data used to 
fit the model. Taylor cautioned that the implicit assumption in these measures of 
significance was that the model used for regression is a reasonable representation 
of the underlying process. This is in contrast to the use of data splitting in the con-
text of cross-validation or estimating prediction error, which requires essentially 
no assumptions. Taylor broadly described a model as a collection of distributions 
that are drawn from the same space that the data came from, specification of 
which requires a decision on the part of the statistician. Only after the model has 
been specified can statistical concepts such as estimators, hypothesis testing, and 
confidence intervals be defined. While this is well established in classical statistical 
contexts, Taylor explained that in the data splitting context the goal is to use the 
data to choose one such model by conditioning on the first-stage data (Fithian et 
al., 2014; Tian and Taylor, 2015). 

Taylor presented a graphical representation of the process of data splitting 
(Figure 5.2A): taking a random split (w) from the original data set (X, y) results 
in the first-stage data (X1, y1), from which the square root lasso selects a subset of 
variables (E). In the example above, the subset of variables E corresponds to the 
11 mutations that were used in a Gaussian parametric model to fit the remaining 
second-stage data. Yellow nodes correspond to random variables that are condi-
tioned on, grey nodes correspond to random variables that are marginalized over, 
and blue nodes correspond to random variables that require specification of a 
model by the analyst. Taylor compared this graphical presentation of data splitting 
to the Box-Tukey paradigm for statistical inference, in which researchers collect 
exploratory data (Xe, ye), perform exploratory analyses to identify variables of 
interest (E), and collect confirmatory data (Xc, yc) on these variables for subsequent 
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A B 

Random variables requiring modeler’s input

Random variables conditioned on

FIGURE 5.2  Graphical representations of (A) data splitting and (B) the exploratory-confirmatory 
analysis paradigm. X and y represent random variables before data splitting, ω represents a random 
split, X1 and y1 represent the first-stage data used to select variables E for fitting. Xe and ye represent 
data collected in exploratory analysis, and Xc and yc represent data collected in confirmatory analysis. 
SOURCE: Jonathan Taylor, Stanford University, “Selective inference in linear regression,” presentation 
to the workshop, June 9, 2016.

confirmatory analysis. In the Box-Tukey paradigm, the exploratory data and vari-
ables of interest are conditioned on and model specification occurs after variables 
have been selected, whereas in the data splitting representation model specifica-
tion occurs before variables are selected (Figure 5.2B). There is a trade-off in data 
splitting between the fraction of data used in the first-round screening of variables 
and the fraction saved for inference in the second round. Using a synthetic data set, 
Taylor showed that as more data are used in the first round, the statistical power of 
second-round inference decreases; conversely, as more data are retained for second-
round inference, the probability of identifying all significant variables decreases. 
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STATISTICS AND BIG DATA CHALLENGES IN NEUROSCIENCE 

Emery N. Brown, Massachusetts Institute of Technology,  
Massachusetts General Hospital, and Harvard Medical School

Emery N. Brown began by describing his participation in the Brain Initia-
tive, which was designed to foster development of new tools to advance the field 
of neuroscience. He emphasized that focusing solely on the creation of tools to 
generate more data was insufficient and therefore must be complemented by both 
statistical methods and analysis procedures to effectively utilize new data streams. 
Building on this motivation, Brown reviewed the Box-Tukey paradigm for statisti-
cal reasoning under uncertainty, which combines the idea of iterative model build-
ing with the delineation between exploratory and confirmatory analyses (Tukey, 
1977; Box et al., 1994). Describing the Box-Tukey paradigm in the context of neuro
science (Kass et al., 2005), Brown remarked that the underlying conceptual model 
for neuroscience experiments is the regression model: the analyst is interested in 
how a subject’s response to stimulus changes as different covariates are changed. 
In addition to being multivariate, neuroscience data are highly dynamic; however, 
most neuroscience data analysis methods are static, thus filtering out important 
information. Brown showed a few diverse examples of dynamic neuroscience 
data, including neuron spike train data, images produced by functional magnetic 
resonance imaging and diffuse optical tomography, and behavioral or cognitive 
performance data. 

Brown presented a case study from his anesthesiology research evaluating 
electroencephalogram (EEG) data collected from patients under general anesthesia, 
which he explained is a high signal-to-noise ratio problem because background 
noise from movement is greatly reduced. Solving these problems may provide 
insights into strategies to evaluate low-signal problems that are more challeng-
ing. A video recording showed one patient’s EEG signal before, during, and after 
administration of an anesthetic, and he called attention to the clear difference 
in waveforms recorded as the patient progressed from awake to anesthetized. In 
addition to this temporal dynamic, Brown said there are also spatial differences 
and patterns; he showed EEG data collected at 44 different locations on a patient’s 
head as the dose of anesthetic is increased then decreased over a period of about 
2 hours. The spectrogram at each location shows the movement of a 10 hertz (Hz) 
oscillation from the back of the brain to the frontal areas as anesthesia is induced, 
remaining in the front while the patient is unconscious and receding to the rear 
as drug levels decrease. 

While the spatial and temporal dynamics have been known for more than 
30 years, Brown and colleagues collected data on this process and combined 
statistical methods with experimental and modeling studies to develop a better 
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mechanistic understanding of how the medication works. By finding the eigen
values for the cross-spectral matrix at each frequency as a function of time and 
taking the ratio of the first eigenvalue to the sum of all eigenvalues, Brown calcu-
lated the global coherence of the EEG signal. If the first eigenvalue and thereby 
the global coherence are large, it suggests there is clear directionality to the EEG 
signal at that frequency and time. He showed the time course of global coherence 
for six patients that showed strong coherence (e.g., between 0.7 and 0.8) at 10 Hz 
when they were unconscious, as indicated by their lack of response to verbal 
questioning (Figure 5.3). Combining this observed behavior with knowledge of 
drug binding sites, anatomy of the brain, and modeling work suggesting that the 
thalamus is active over this time, Brown and colleagues inferred that the stand-

FIGURE 5.3  Time course data for six subjects shows emergence of strong coherence across the front 
of the scalp at approximately 10 Hz (yellow to red band, left axis) in EEG recordings while the subject 
is unconscious, as indicated by lack of response to yes-no questions (black line, right axis). The strong 
10 Hz coherence when the subject is responding is in the posterior part of the scalp. SOURCE: Repro-
duced with permission from Cimenser, A., P.L. Purdon, E.T. Pierce, J.L. Walsh, A.F. Salazar-Gomez, P.G. 
Harrell, C. Tavares-Stoeckel, K. Habeeb, and E.N. Brown. 2011. Proceedings of the National Academy of 
Sciences 108(21): 8832-8837.
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ing 10 Hz oscillation in the frontal region of the brain under anesthesia is driven 
by rhythmic activity between the thalamus and frontal cortex (Ching et al., 2010; 
Brown et al., 2011; Cimenser et al., 2011; Purdon et al., 2013). The reason this 
could cause unconsciousness, Brown explained, is that with slow, large amplitude 
oscillations, individual neurons fire infrequently, making it extremely difficult for 
regions of the brain to communicate. Follow-up experiments designed to test this 
hypothesis in rodents and monkeys verified the presence of these oscillations and 
phase-limited spiking activity. 

Brown commented that it is often challenging to identify and apply statistical 
methods to answer a given question. Moving to a second illustrative example com-
paring the EEG spectra of cohorts of 0- to 3- and 4- to 6-month-old children under 
anesthesia—which appeared visually different, as the younger age group showed 
no oscillations above 5 Hz—he posed the seemingly simple question of whether 
there was a statistically significant difference in power as a function of frequency 
between the two age groups (Cornelissen et al., 2015). Simply plotting the power 
of the two groups’ spectra versus frequency with 95 percent confidence intervals 
is sufficient for publication, but it is more appropriate to compute the difference 
between the two groups and construct a confidence interval around that. Brown 
described calculating the 95 percent confidence interval for the difference using 
bootstrap methods (Ramos, 1988; Hurvich and Zeger, 1987) and showed the upper 
and lower confidence bounds on the difference as a function of frequency. These 
are the curves that allow meaningful inference, said Brown, and while this is a 
trivial question to pose, it is not trivial to answer. Furthermore, this analysis was 
done for a single point in time, whereas the EEG spectra is dynamic over time; 
the latter presents additional challenges in identifying and applying statistically 
appropriate methods.

Shifting topics to statistics education, Brown said there is an unacknowledged 
epidemic of collective ignorance of statistics. Solutions such as delivering short 
courses for disciplinary scientists in statistical methods do not solve the underlying 
problem. It is critically important to introduce probability theory, statistics, and 
data analysis content earlier in education, where the curriculum accommodates 
repetition, so that students have sufficient time to practice and develop statistical 
intuition. Brown suggested that a repetitive, reinforcing curriculum be developed 
to introduce students in middle and high school to statistics, analogous to the 
way algebra is taught. Brown said this would change science dramatically. Trained 
statisticians are good at making inferences, and it is critical to build this capacity 
in students at all levels of coursework. He remarked that the fields of engineering 
and physics are effective at providing students with an understanding of funda-
mental principles, and he strives to teach concepts as fundamental principles and 
paradigms that are retained by students, as opposed to merely teaching a series of 
tests to apply based on different types of data. 
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Responding to a common characterization of statisticians as merely contribut-
ing to work done by their scientist collaborators, Brown asserted that statisticians 
are scientists too. With increasingly abundant data and the emerging field of data 
science, now is the time for the field of statistics to flourish. Statisticians need to 
consider themselves as scientists, he said, and to encourage future statisticians 
to become disciplinary experts or even experimentalists, pointing to the irony 
that statisticians are trained in design of experiments but rarely design their own 
experiments. Recounting personal experiences, Brown said that a high fraction of 
neuroscience researchers come to the field from physics and describe themselves 
as physicists studying neuroscience; statisticians should adopt a similar model of 
bringing their fundamental training to different scientific domains by becoming 
scientists in those domains. The field of statistics needs a credo, Brown concluded, 
that there is no uncertainty that statisticians cannot quantify.  

DISCUSSION OF STATISTICS AND  
BIG DATA CHALLENGES IN NEUROSCIENCE 

Xihong Lin, Harvard University

Xihong Lin provided several examples of diverse data types that fall under the 
umbrella of big data, including neuroimaging, whole genome sequencing (WGS), 
and real-time pollution or activity monitoring collected from smart phones. She 
emphasized that integrating such different types of data is a critical challenge. The 
real value of big data is in its analysis and the inferences it allows, and the potential 
applications and benefits of data science are diverse. For example, in the field of 
health care, data science can help illuminate the causes and mechanisms of diseases, 
guide development of precision medicine and preventative actions, and inform 
health policy decisions, said Lin. She described the core of data science as being 
composed of statistics, computer science, and informatics, with the general goal 
of transforming data into knowledge (which requires inference). Reiterating that 
statisticians must be engaged as scientists, she pointed to the history of biostatistics 
as a successful engagement that resulted in better research. Lin described several 
lessons learned from the field of biostatistics: to always engage in cutting-edge 
research, to let collaboration drive method development, and to allow disciplinary 
scientists to be strong advocates for statisticians. She hopes that data science can 
continue to build on this experience, noting that it will be critical to build equally 
strong alliances with computer scientists and informaticians, as well as domain 
scientists, as each discipline brings unique and necessary skills. 

Lin introduced the human genome project, launched 17 years ago with the goal 
of conducting WGS on the approximately 3 billion base pairs in the human genome. 
WGS is comprehensive compared to genome-wide association studies that cover 

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


59I n f e r e n c e  w h e n  R e g u l a r i z a t i o n  I s  U s e d  t o  S i m p l i f y  F i t t i n g

only common variants accounting for less than 10 percent of the genome. Since 
the completion of the human genome project in 2003, a series of larger sequenc
ing projects have been announced, including the 2015 National Heart, Lung, and 
Blood Institute’s Trans-Omics for Precision Medicine Program, which will produce 
WGS data for 100,000 to 150,000 subjects;2 and the 2016 National Human Genome 
Research Institute’s Genome Sequencing Program, which plans to collect WGS 
data on 200,000 individuals.3 Combined, these projects will cover over 300,000 
individuals and facilitate the even more ambitious Presidential Precision Medicine 
Initiative, which includes WGS for 1 million people. To convey the size of the data 
sets resulting from such large projects, Lin explained that WGS for 300,000 people 
corresponds to 4 × 1016 sequenced bases—on the same order of magnitude as the 
number of grains of sand on a large beach. Among the 15,000 individuals who have 
already been sequenced, 44 percent of the single nucleotide polymorphisms (SNPs) 
are observed only in one person, and thus the data are characterized by high sparsity. 
That is, in a data matrix with WGS on 15,000 individuals (rows) and 190 million 
columns, 44 percent of columns have only one nonzero value. 

Lin explained that the first goal of WGS is to identify genetic regions that are 
associated with specific diseases or traits, which is analytically challenging because 
of the large size of the data sets and the low signal-to-noise ratio. With so many rare 
variants across all people, the simplest SNP analysis is not applicable. The common 
rare variant analysis methods developed for dense alternatives, such as sequencing 
kernel estimation (Wu et al., 2011), are subject to power loss when signals are sparse 
in a region. In such cases, tests for sparse alternatives—for example, those based 
on Generalized Higher Criticism (Barnett et al., 2016; Murkerjee et al., 2015)—are 
necessary to increase power. 

Ten years ago, Lin explained, statisticians described the “small n, large p” 
data set problem—in which the number of variables with available data (e.g., 
20,000 gene expressions) greatly exceeds the number of observations (e.g., dozens 
of patients)—but now larger and larger sample sizes have created a “large n, 
huge p” problem. For example, the National Human Genome Research Institute’s 
Genome Sequencing Program contains data from 200,000 subjects consisting of 
approximately 1 billion SNPs. Because the majority of the human genome contains 
rare variants, p increases with n and additional rare variants will be observed as 
more samples are sequenced. Thus it is critically important that statistical analysis 
methods are scalable, said Lin. Because each chromosome contains large intergenic 
regions that do not code for a specific gene (i.e., non-coding regions), it is difficult 

2   The website for the Trans-Omics for Precision Medicine Program is https://www.nhlbi.nih.gov/
research/resources/nhlbi-precision-medicine-initiative/topmed, accessed January 6, 2017.

3   The website for the National Human Genome Research Institute’s Genome Sequencing Program 
is http://gsp-hg.org/, accessed January 6, 2017.
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to define the appropriate unit for WGS analysis. This is one area where it will be 
important to incorporate known biological information, such as functional and 
annotation information, said Lin, which will improve the utility of results. 

Moving to the importance of including statistical reasoning in the design 
of modern clinical trials, Lin described research using cell phone record data to 
construct networks representing social interactions and how this information can 
be used to improve HIV interventions. In such networks, random sampling may 
be less effective, as it is unlikely that a highly connected hub node is selected at 
random. A more effective strategy may be to use the data to estimate networks, 
to deliberately sample the hubs, and to prioritize these individuals for interven-
tions because they come in contact with many more people. This strategy likely 
introduces bias that must be accounted for in analysis by developing appropriate 
inference procedures. It is critically important to include statisticians early in the 
research design process of such network-based studies, and other biological studies 
broadly, said Lin. This can both help address challenges such as batch effects and 
lead to more reproducible data generation and analysis techniques. 

Lin closed by reiterating that statisticians should do the following: (1) collabo-
rate with domain scientists on cutting-edge problems and let these interactions 
drive statistical method development, (2) incorporate known domain science into 
the inference task at hand, (3) strive to move beyond point estimation by includ-
ing confidence or uncertainty statements associated with inferences from big data, 
and (4) make realistic assumptions and develop new methods with less stringent 
assumptions. Regarding the last point, Lin elaborated that many problems in 
biology have a low signal-to-noise ratio, but many of the methods developed for 
variable selection require relatively strong signals and are likely not applicable in 
this context. Thus more methods allowing for weak signals need to be developed. 
Looking toward the future, Lin said that with the increasing size of available data 
sets and the spread of cloud computing, it will be increasingly important to make 
sure that methods are scalable and computationally tractable. Related to this, Lin 
suggested that funding agencies consider developing infrastructure grants to help 
establish cloud computing resources for efficient sharing and archiving of bio
medical data and beyond.

PANEL DISCUSSION

Following their presentations, Emery N. Brown and Xihong Lin participated 
in a panel discussion. The first participant asked the speakers how they handle the 
source code for any methods developed and if it is made available to the public. 
Brown responded that his lab makes all code freely available to the public through 
various repositories, although practices vary across labs, fields, and disciplines. For 
example, code for spectral analysis often goes to a different repository than code 
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for neuroimaging analysis, which is shared through a consortium of repositories of 
which Massachusetts General Hospital is a member. Similarly, Lin said that all code 
from her group is made publicly available, and she reiterated that it is important 
for statisticians developing software to understand the practices and data formats 
used by domain science collaborators. Furthermore, she encouraged statisticians 
writing code to consider the emergence of cloud computing, as software that works 
well for clustered computing may not be effective in the cloud environment.

A bioinformatics master’s student commented that graduate programs want 
students with strong computational and statistical training; however, there was 
little opportunity or incentive to engage with these concepts in high school or as an 
undergraduate biology major. Brown responded that introducing statistics earlier 
and more broadly in education is a critical opportunity; a fraction of the resources 
dedicated to training current scientists in statistics should be allocated for middle 
and high school students. In 5 or 10 years, these students will be postdoctoral re-
searchers, graduate students, and undergraduates, he said, and scientific research 
will suffer if they are not trained properly. 
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The last session of the workshop featured a panel discussion among Alfred 
Hero (University of Michigan), Cosma Shalizi (Carnegie Mellon University), 
Andrew Nobel (University of North Carolina, Chapel Hill), Bin Yu (University of 
California, Berkeley) and Michael Daniels (University of Texas, Austin) that was 
moderated by Robert Kass (Carnegie Mellon University). The discussion reinforced 
many of the comments made in sessions throughout the workshop and emphasized 
broader concerns related to statistics and data science education, interdisciplinary 
collaboration, and the role of statistics in scientific discovery. 

RESEARCH PRIORITIES FOR IMPROVING INFERENCES FROM BIG DATA

Kass posed a question about future priority research areas for improving infer-
ences drawn from big data. Hero responded that, while there are many research areas 
where investment would advance the field, he was struck by the number of workshop 
presentations that focused on trying to integrate data and knowledge from different 
levels of description. For example, Hero described the challenge and potential value 
of integrating data-tracking phenomena on the subcellular and cellular levels with 
observational data from individual patients or cohorts. Creating models that com-
bine these disparate types of data across different scales is a critical challenge that 
has many researchers stuck and does not receive sufficient attention from funding 
agencies. Making sound inferences from these integrative approaches will necessarily 
require contributions from domain scientists, statisticians, informaticians, and com-
puter scientists, concluded Hero. Kass elaborated that this challenge is different 

6
Panel Discussion
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from more classical interpretations of multiscale analyses, in which the underlying 
mechanisms relating phenomena are understood and relatively simple, because in 
this context the mechanisms relating phenomena across different scales are highly 
complex and potentially unknown. Nobel agreed and commented that in classical 
multiscale analysis there is typically a single fixed phenomena evaluated across scales, 
whereas the challenge identified by Hero requires evaluation of multiple phenomena 
across many scales. Due to the broad range of disciplinary backgrounds involved, 
Hero said this challenge requires the creation of large, sustained funding opportuni-
ties instead of an increase in the number of single investigator grants.

Another opportunity for funding agencies, said Yu, is to direct resources to re-
search robustness and the implications of working with misspecified models, which 
is emerging in the literature but not performed in a systematic way (most studies 
still use one idealized model). Nobel agreed, saying that rigorous studies about 
model misspecification could move beyond acknowledging its existence to proving 
how misspecification affects downstream inference. Yu noted that simulation and 
computational approaches could be valuable to study dependent model structures; 
disciplines such as chemistry and physics have established strong computational 
subfields, whereas statistics has not, and she concluded that targeted investments 
from the National Science Foundation in computational statistics could efficiently 
advance understanding. Complementary to rigorous studies on model structure, 
Daniels said that there is a critical need to develop methods and approaches to iden-
tify and address messiness in large, heterogeneous data sets, which occurs before, 
and therefore underlies, model selection and inference. Although having access to 
additional data is a great resource, it comes with additional “messiness” with more 
complex causes, said Daniels, and understanding the causes and implications of 
this messiness will require input from multiple perspectives. 

Looking toward the future, Yu imagined that there could be widespread use 
of artificial intelligence to automate statistical analyses for scientists who are not 
trained in statistics; the statistics community needs to work to ensure that appro-
priate methods will be incorporated into automated packages. Statistical research 
should be porous and outward facing, she explained, so that new ideas and chal-
lenges from domain scientists flow into the field and new statistical methods and 
best practices flow into the domain sciences. Yu emphasized several emerging fields 
of study—including causal inference and machine learning—that are frontier 
fields for which incorporation of statistical concepts will be critically important. 

INFERENCE WITHIN COMPLEXITY AND 
COMPUTATIONAL CONSTRAINTS

Moving to the next topic, Nobel introduced the general concept of “infer-
ence given complexity constraints,” and he pointed to the trade-off of improving 
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performance in the inference task at the cost of increased model, informational, 
and computational complexity. Regarding computational complexity, Nobel noted 
that inference is generally performed using a computer, and even the best-designed 
inference procedure is of little value if it cannot be computed. A researcher’s 
willingness to repeat an analysis that takes 1 week is typically much less than his/
her willingness to complete an analysis that takes 1 day, he continued, so efficient 
computing can facilitate replication and model checking. Information complexity 
may also present constraints, particularly given concerns regarding patient privacy 
that could manifest in data sets that have been randomized or have had information 
selectively removed. In this context, Nobel emphasized that it will be important 
to evaluate trade-offs between the inference task and the level of privacy protec-
tion imposed on available data. As databases continue to grow and move to cloud 
environments, such issues of method scalability, database management, metadata, 
and data sharing will become increasingly important. It is nontrivial for a group of 
researchers to agree on what the appropriate method and data are, let alone keep an 
accessible record of how each has evolved over the course of a project. While such 
practical considerations may not be glamorous, it is important for researchers to 
know and be transparent about how many permutations of data sets and methods 
they have tried to avoid “cherry picking” results. 

EDUCATION AND CROSS-DISCIPLINARY COLLABORATION

Kass asked Yu to elaborate on the importance of cross-disciplinary collabora-
tion in statistics. Yu said that the driving goal of statistics is to solve problems, which 
requires statisticians to involve domain science collaborators. She described that 
her research group embeds graduate students and postdoctoral scholars in domain 
science labs, which helps statisticians understand what questions collaborators are 
pursuing, how the data being evaluated are generated, and what useful knowledge 
is statistically supported with available data. She stated that collaborators do not 
always just need a p-value or confidence interval, and there is a broader opportunity 
to engage collaborators in creating an evolving, systematic approach to defining 
and pursuing statistical problems. Statisticians need to make sure that development 
and application of inference methods are grounded in the decision context faced 
by their collaborators, which may be a departure from traditional approaches. 
Related to this is the need for statistics students to receive communications training 
to improve interactions with collaborators, and Yu encouraged funding agencies 
to allocate resources for training in interpersonal collaboration skills within larger 
research grants. 

Hero commented on the perception—both internal and external to the field—
that statisticians are overly negative and insignificant intellectual contributors 
to the scientific process. He encouraged the statistics community to continue to 
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question the significance of findings and to provide constructive recommenda-
tions regarding potential next steps to improve confidence in research findings. In 
addition to statisticians simply being more positive in interactions with collabo-
rators, Hero suggested that targeted research investments be made in developing 
statistical methods that help predict the next sequence of experiments that will 
lead to improved p-values or confidence intervals. There has been some coverage 
of this concept in the literature—for example, sequential design of experiments 
and reinforcement learning—and these examples offer building blocks for a co-
ordinated effort, said Hero. Yu agreed, saying that statisticians must adopt a “can 
do” attitude and be willing to take on hard analysis challenges without a clear idea 
of how to solve them. 

Shalizi commented that big data does not seem to reveal any problems with 
the concept of statistical inference, but rather that big data exposes the limita-
tions of the simplifying assumptions used in introductory statistics classes. For 
example, the statistics community has always known that the linear model with 
Gaussian noise is too simplified; that p-values combine information on the size of 
a coefficient, how well it can be measured, and how large the sample size is but does 
not indicate variable importance; and that no amount of additional data will help 
if the quantity of interest is not identified in the collected variables. Nonetheless, 
the community has not communicated this well outside the field and has seem-
ingly been content to let oversimplifications from introductory statistics become 
the norm. This needs to change as more researchers have access to larger data 
sets—with 20 million measurements, every model coefficient that is not exactly 
zero will appear to be significant. Shalizi said the statistics community needs to 
think about how to convey uncertainty in these analyses and how to communicate 
the meaning of parameters when a model is not correct and is misspecified. There 
are ideas about how to do this within the field, but they need to be packaged so 
that researchers and analysts at the lab bench or policy think tank can understand 
and apply appropriate methods. If it has to be done model by model and based 
on detailed mechanistic insight, it will not be scalable, said Shalizi. Yu agreed, sug-
gesting that software programs could be automated to apply numerous tools to a 
data set with very little interaction from a human. 

This also suggests that statistics education has to change, not just by introduc-
ing the field to middle and high school students, but by reforming undergraduate 
curricula as well, said Kass. Looking across all of the institutions teaching basic 
statistics, or even limited to those taught by faculty with degrees in statistics, there 
are opportunities for improvement. Researchers often approach statistics as sim-
ply trying to find the appropriate test to apply to a given data set, without deeper 
consideration of underlying principles. This is in part because of how statistics is 
taught, and Kass suggested that educators spend more time teaching fundamental 
principles rather than a series of different tests. Yu agreed, saying that the existing 
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statistics curriculum is “flat” and should be reorganized in a hierarchical manner, 
with core principles across the curriculum leading into more in-depth topics. While 
many old principles still work, Yu emphasized that new ones need to be developed 
too. Daniels said that graduate education should provide students with experience 
programming and writing software. Yu agreed, saying that the best data science 
doctoral students should be able to program like computer science students and 
have formal training in both information science and communication. 

Joseph Hogan (Brown University) described the necessity for the statistics cur-
riculum to be modernized by introducing students to challenges and approaches 
for small n, large p data sets or for drawing causal conclusions from observational 
data. Some concepts may not be overly difficult to integrate into existing courses, 
and researchers and funding agencies need to think critically about how to improve 
the basic statistics curriculum. With more data science programs emerging, Hogan 
expressed concern that enrollment in and graduation from statistics programs 
could decline as the best students will be drawn to other fields. He encouraged 
funding agencies to develop graduate and postdoctoral training programs that 
specifically identify statistics as a necessary component of data science and to call 
out statistics explicitly in large program announcements. Shifting to future research 
needs, Hogan said it is critically important to make the distinction between inten-
tionally collected data and “found data,” such as electronic health records (EHRs), 
and he suggested that new funding opportunities be created to explore design issues 
that lead to meaningful inferences when using found data; this could help address 
challenges across many domains. 

Moving to the topic of providing graduate students training in computing, 
Xihong Lin (Harvard University) said that many statistics students receive good 
training in statistical software such as R, but big data computing requires that stu-
dents be exposed to additional languages and basics of software engineering, online 
storage and indexing platforms such as GitHub,1 and elements of data curation and 
informatics. Jonathan Taylor (Stanford University) commented that good coding 
practices are not well rewarded in statistics departments or academia broadly and 
that professors need to lead by example. Lin noted that producing widely acces-
sible statistical software often requires hiring a professional software engineer at 
an additional cost. In her final comment, Lin remarked on the requirement that 
all training grant awardees receive training in responsible conduct of research 
and suggested that analogous training in basic data science be considered as well. 
Related to this, Lin encouraged the data science community to think about what 
content is appropriate for a general undergraduate course for all students, similar 
to Harvard College’s recently approved general education course called “Critical 
Thinking with Data.”

1    The website for GitHub is https://github.com/, accessed January 6, 2017.
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IDENTIFICATION OF QUESTIONS AND 
APPROPRIATE USES FOR AVAILABLE DATA

Recalling earlier presentations, Kass said that even when available data cannot 
answer a researcher’s specific question, it may be possible to identify alternative 
questions that are well supported by available data. He encouraged further research 
and methods development focused on identifying such questions given a particu-
lar data set. Yu commented that there are theoretical approaches—for example, 
finite sample theory—for identifying what can be estimated reliably given a fixed 
number of observations. Another potential principle is stability, said Yu, which 
requires only those results that are consistent across different methods and per-
turbations of data to be interpreted. For example, when using clustering methods 
it is often unclear which method to apply, so Yu recommends applying multiple 
approaches and selecting only those results that are stable across all methods. Hero 
commented that in small n, huge p data sets, linear combinations or other patterns 
may be found, but parameters can be difficult to identify. He stated that methods 
to explore what questions can be answered are worthy of further theoretical and 
applied research. Daniels agreed and added that data sets with more samples than 
parameters—the so called large n, huge p regime—may produce deceptively small 
confidence intervals because the assumptions underlying the models are untested. 

Genevera Allen (Rice University and Baylor College of Medicine) reminded 
participants of the critical difference between inference for exploratory analysis and 
inference for confirmatory analysis, saying that the community needs to develop 
new approaches and languages for communicating the high uncertainty associated 
with exploratory analyses. In complex data mining procedures there is high uncer-
tainty from the data and from the methods, and statisticians need to guide domain 
scientists through how to interpret and use such results. Related to communication, 
one audience member elaborated that big data is not one homogeneous thing and 
that the term means different things to different people. There are easy problems 
to solve using big data and there are hard problems; it would be helpful to develop 
a taxonomy of problems big data could help solve. Relevant dimensions include 
the level of scientific understanding of underlying phenomena, the specific goals 
of the analysis, the extent of experimental control on the data used, and the ability 
to replicate the analysis, he said. Based on criteria such as these, the participant 
believes that it could be possible to identify those questions for which big data will 
help and those that hold little promise.

FACILITATION OF DATA SHARING AND LINKAGE

Yu urged funding agencies to help improve and incentivize data sharing—
particularly referring to EHRs—across multiple institutions, saying that this 
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remains a critical bottleneck. Data from one hospital or research center is helpful, 
but the real power comes from being able to combine data sets from multiple 
hospitals across multiple regions, she said, and Daniels agreed. Returning to the 
topic of model validation and broad dissemination of diagnostic tools, Yu sug-
gested that the statistics community organize a series of discussion forums and 
position papers that chart a path forward and provide consensus recommendations 
to domain scientists working with big data regarding best statistical practices. She 
said other disciplines cannot be expected to avoid statistical pitfalls if the statistics 
community has not come to consensus on best practices. Shalizi agreed that edu-
cational activities, forums, and position papers are a good start, but these must 
be coupled with larger changes to the incentive structure for publishing positive 
findings in high-impact journals. Kass agreed, noting that this is part of a larger 
discussion regarding reproducible research. Hero commented that development 
and wide dissemination of statistics software packages could reduce the barriers to 
identifying and applying the appropriate tools and would advance both statistics 
and domain sciences. 

Lin brought up the challenges of data sharing, saying that efforts need to 
go beyond simply sharing data by promoting linkages across different data sets. 
For example, it is currently difficult to link data produced by many existing large 
genome-wide association studies with EHR data or Medicare databases, she said, 
and assistance from federal agencies in achieving such data linkage could provide 
great resources for the research community.

THE BOUNDARY BETWEEN BIOSTATISTICS AND BIOINFORMATICS

An audience member asked the panel to elaborate on the distinction between 
biostatistics and bioinformatics, noting that the boundary is increasingly fluid as 
data management and preprocessing become more and more important to statis-
tical analysis. Nobel responded that one distinction is that informaticians do not 
typically have extensive training in statistics and do not emphasize statistics in their 
research. Instead, informaticians typically focus on the “nuts and bolts” of working 
with large, high-dimensional databases, and the service they provide is essential. 
Yu agreed, saying a related distinction is that many bioinformatics researchers 
focus on solving one specific medical challenge, whereas statisticians are typically 
broader in their approaches. Hero, who advises students in both bioinformatics 
and statistics departments, observed that most bioinformatics students come from 
computer science and biology backgrounds, and very few have extensive math or 
statistics training. However, the skills and training obtained by bioinformaticians 
makes them essential interlocutors between statisticians and biologists or other 
health care professionals, concluded Hero.
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JUNE 8, 2016

8:30 a.m.	 Welcome and Overview 

	 Introductions from the Co-Chairs 
	 Michael Daniels, University of Texas at Austin
	 Alfred Hero, University of Michigan

	 Perspectives from Stakeholders 
	 Michelle Dunn, National Institutes of Health 
	� Nandini Kannan, National Science Foundation, Division of 

Mathematical Sciences 

	 Overview of the Workshop 
	 Michael Daniels, University of Texas at Austin

9:40	 Break 

10:00	� Session I - Inference About Discoveries Based on Integration of 
Diverse Data Sets 

	 Presenter: 	� Alfred Hero, University of Michigan, to speak about 
integrating and drawing inferences from multimodal data

B
Workshop Agenda
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	 Discussant: 	�Andrew Nobel, University of North Carolina at Chapel Hill 

	 Q&A

11:45	 Lunch
	
12:45 p.m.	 Session I, continued

	 Presenter: 	� Genevera Allen, Rice University, to speak about 
statistical methods using medical/health case studies

	 Discussant: 	Jeffrey S. Morris, MD Anderson Cancer Center

	 Q&A

2:10	 Break 

2:30 	� Session II - Inference About Causal Discoveries Driven by Large 
Observational Data

	 Presenter: 	� Joseph Hogan, Brown University, to speak about causal 
inference and decision making with health record data 
using a case study on HIV in Kenya

	 Discussant: 	Elizabeth Stuart, Johns Hopkins University  

	 Q&A

3:55	 Break 

4:15	 Session II, continued

	 Presenter: 	� Sebastien Haneuse, Harvard University, to discuss 
comparative effectiveness research using electronic 
health records

	 Discussant: 	Dylan Small, University of Pennsylvania 

	 Q&A 

5:40	 Adjourn Day 1
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JUNE 9, 2016

8:30 a.m.	 Opening Perspectives from Stakeholders 

	� Chaitan Baru, National Science Foundation, Computer and 
Information Science and Engineering 

8:40	� Session III - Inference When Regularization Is Used to Simplify 
Fitting of High-Dimensional Models

	 Presenter: 	� Daniela Witten, University of Washington, to discuss 
network reconstruction from high-dimensional ordinary 
differential equations

	 Discussant: 	�Michael Kosorok, University of North Carolina at 
Chapel Hill

	 Q&A 

10:00	 Break 

10:20	 Session III, continued

	 Presenter: 	� Emery Brown, Massachusetts Institute of Technology, 
to speak about using different recording methods with 
high-dimensional time series

	 Discussant: 	Xihong Lin, Harvard University

	 Q&A 

	 Technical/Methodological Presenter 
	 Jonathan Taylor, Stanford University 

	 Q&A 

12:30 p.m.	 Lunch

1:00	 Concluding Panel Discussion 

	 Moderator: 	Robert Kass, Carnegie Mellon University 
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	 Panelists: 	 Alfred Hero, University of Michigan
		  Bin Yu, University of California, Berkeley
		  Cosma Shalizi, Carnegie Mellon University
		�  Andrew Nobel, University of North Carolina at Chapel 

Hill

3:00	 Adjourn Workshop

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


100

AMPATH	 Academic Model Providing Access to Healthcare 
ART	 antiretroviral therapy

BD2K	 Big Data to Knowledge 

CATS	 Committee on Applied and Theoretical Statistics
CD4	 cluster of differentiation 4 (T-cells)

DNA	 deoxyribonucleic acid

EEG	 electroencephalogram
EHR	 electronic health record

fMRI	 functional magnetic resonance imaging

GTEx 	 Genotype-Tissue Expression

HIV	 human immunodeficiency virus
Hz	 hertz

MAP	 Memory and Aging Project
miRNA	 micro ribonucleic acid
MRI	 magnetic resonance imaging

C
Acronyms

Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/24654


101A p p e n d i x  C

mRNA	 messenger ribonucleic acid

NIH	 National Institutes of Health
NSAID	 nonsteroidal anti-inflammatory drug
NSF	 National Science Foundation

RNA	 ribonucleic acid
ROS	 Religious Orders Study

SNP	 single nucleotide polymorphism

TCGA	 The Cancer Genome Atlas

WGS	 whole genome sequencing
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